Analysis of EEG-EMG Coherence in Low Frequency Bands.

Stud Health Technol Inform

Department of Instrumentation and Control Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, India.

Published: May 2021

AI Article Synopsis

  • The study analyzes the relationship between brain activity and muscle function during ramp descent (RD) and stair descent (SD) movements using EEG and EMG signals.
  • The researchers calculated magnitude squared coherence (MSC) to assess corticomuscular coupling in low-frequency bands, focusing on delta (0.1-3 Hz) and theta (4-7 Hz) frequencies.
  • Results indicate that there is significant corticomuscular coupling with variations between the tasks and frequency bands, suggesting MSC can help in detecting walking intentions.

Article Abstract

In this, study, an attempt is made to analyze the corticomuscular coupling of the brain and muscular system in the low-frequency components during ramp descent (RD) and stair descent (SD) locomotion. For this purpose, magnitude squared coherence (MSC) is computed from the simultaneous EEG and EMG signals recorded during the ramp and stair descent tasks. The MSC is extracted from the low- frequency bands such as delta (0.1-3 Hz) and theta bands (4-7 Hz). The study utilizes a publicly available database consisting of simultaneous recorded EEG, lower limb EMG and full body motion information from ten healthy subjects. The results show that there exists corticomuscular coupling between motor cortex (C1, C2 and Cz contacts) and tibialis anterior muscle activities during RD and SD. In addition, the MSC differs for both the tasks and frequency bands. In delta band frequencies, the MSC is found to be higher in C2 regions. In the case of theta, the MSC is higher in C1 during RD and in Cz during SD. Therefore, the MSC associated with the low frequency components could be used to detect walking intentions.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI210224DOI Listing

Publication Analysis

Top Keywords

frequency bands
12
low frequency
8
corticomuscular coupling
8
stair descent
8
bands delta
8
msc higher
8
msc
6
analysis eeg-emg
4
eeg-emg coherence
4
coherence low
4

Similar Publications

Photic drive response in people with epilepsy: Exploring the interaction with background alpha rhythm.

Vision Res

January 2025

Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia. Electronic address:

Photic drive responses (PDRs) are used to explore cortical hyperexcitability. We quantified PDRs and interactions with the alpha rhythm in people with epilepsy (PwE). Fifteen PwE (mean age ± SD 47.

View Article and Find Full Text PDF

Objectives: The dynamics of monosodium urate (MSU) crystal changes across a range of serum urate concentrations in people with gout are unknown. This study aimed to systematically examine the relationship between serum urate and changes in dual-energy CT (DECT) urate volume in people with gout and stable serum urate concentrations.

Methods: Individual participant data were analysed from three studies of people with gout.

View Article and Find Full Text PDF

Introduction: Major Depressive Disorder (MDD) leads to dysfunction and impairment in neurological structures and cognitive functions. Despite extensive research, the pathophysiological mechanisms and effects of MDD on the brain remain unclear. This study aims to assess the impact of MDD on brain activity using EEG power spectral analysis and asymmetry metrics.

View Article and Find Full Text PDF

The CN stretch frequency of neutral, gas-phase 9-cyanoanthracene is 2207 cm (4.531 μm) based on high-resolution infrared absorption experiments coupled with a new hybrid anharmonic quantum chemical methodology. A broad band (full-width at half-maximum of 47 cm) is observed and assigned to multiple transitions, including the CN stretch fundamental and various combination bands that gather intensity from strong anharmonic coupling with the bright CN stretch.

View Article and Find Full Text PDF

Optimal frequency bands for pupillography for maximal correlation with HRV.

Sci Rep

January 2025

Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.

Assessing cognitive load using pupillography frequency features presents a persistent challenge due to the lack of consensus on optimal frequency limits. This study aims to address this challenge by exploring pupillography frequency bands and seeking clarity in defining the most effective ranges for cognitive load assessment. From a controlled experiment involving 21 programmers performing software bug inspection, our study pinpoints the optimal low-frequency (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!