1. Measurements of input resistance (RN), time constant (tau 0), and electrotonic length (Lpeel) were derived from intracellular voltage changes produced by injection of current pulses in six type-identified triceps surae alpha-motoneurons. The motoneurons were labeled with horseradish peroxidase and subsequently reconstructed and measured from serial sections. These quantitative morphological and physiological data were incorporated into detailed computer models of the motoneurons. 2. Steady-state and dynamic models were used to determine values for specific membrane resistivity (Rm) that matched the experimental estimates of RN, tau 0, and Lpeel for each motoneurons. The models were based on the following assumptions 1) the membrane was electrically passive, 2) cytoplasmic resistivity (Ri) was 70 omega-cm, and 3) "sealed-end" boundary conditions were present at dendritic terminations. We also considered the nature and magnitude of possible errors introduced by using linear (passive) computer models to match responses from motoneurons with nonlinear (i.e., voltage-dependent) conductances. 3. If we assume that the experimental measurements of RN and tau 0 were correct, uniform Rm values that reproduced the experimentally measured RN required widely varying values of Cm (1.4-8.6 microF/cm2) to match the experimental tau 0. Furthermore, the electrotonic distance to dendritic terminals was generally much greater than expected from physiological estimates of Lpeel. However, if we assumed that the RN measurements could have been underestimated by as much as 30% and that Cm = 1.0 microF/cm2, it was possible to choose spatially uniform Rm that matched the observed tau 0 in three of six cases. 4. Relaxing the assumption of spatially uniform membrane resistivity permitted us to reconcile the anatomical and physiological characteristics of all six motoneurons. Two qualitatively different models of Rm nonuniformity gave equally good fits to the experimental results 1) a step-wise increase in Rm from a low value at the soma to a much higher but uniform value over the entire dendritic tree, and 2) a monotonic increase in Rm from soma to distal dendrites as a sigmoidal function of path distance along the dendrites. The step and sigmoidal models of the spatial distribution of Rm generated different electrotonic architectures in motoneuron dendritic trees, but both gave essentially identical electrical responses at the soma.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.1988.60.1.60DOI Listing

Publication Analysis

Top Keywords

tau electrotonic
8
computer models
8
membrane resistivity
8
spatially uniform
8
models
6
tau
5
motoneurons
5
electrotonic
4
electrotonic architecture
4
architecture type-identified
4

Similar Publications

Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations.

J Neurophysiol

August 2013

Faculty of Health Sciences, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.

When recording the membrane potential, V, of a neuron it is desirable to be able to extract the synaptic input. Critically, the synaptic input is stochastic and nonreproducible so one is therefore often restricted to single-trial data. Here, we introduce means of estimating the inhibition and excitation and their confidence limits from single sweep trials.

View Article and Find Full Text PDF

Dysregulation of Na+/K+ ATPase by amyloid in APP+PS1 transgenic mice.

BMC Neurosci

February 2005

Alzheimer's Disease Research Laboratory, Department of Pharmacology, University of South Florida, Tampa, USA.

Background: The pathology of Alzheimer's disease (AD) is comprised of extracellular amyloid plaques, intracellular tau tangles, dystrophic neurites and neurodegeneration. The mechanisms by which these various pathological features arise are under intense investigation. Here, expanding upon pilot gene expression studies, we have further analyzed the relationship between Na+/K+ ATPase and amyloid using APP+PS1 transgenic mice, a model that develops amyloid plaques and memory deficits in the absence of tangle formation and neuronal or synaptic loss.

View Article and Find Full Text PDF

Estimation of the electrical parameters of spinal motoneurons using impedance measurements.

J Neurophysiol

September 2004

Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ 85013, USA.

Electrical parameters of spinal motoneurons were estimated by optimizing the parameters of motoneuron models to match experimentally determined impedance functions with those of the models. The model was described by soma area, somatic and dendritic membrane resistivities, and the diameter of an equivalent dendritic cable having a standard profile. The impedance functions of motoneurons and optimized models usually differed (rms error) by <2% of input resistance.

View Article and Find Full Text PDF

The relation between impedance change and the location and magnitude of a tonic synaptic conductance was examined in compartmental motoneuron models based on previously published data. The dependency of motoneuron impedance on system time constant (tau), electrotonic length (L), and dendritic-to-somatic conductance ratio (rho) was examined, showing that the relation between impedance phase and rho differed markedly between models with uniform and nonuniform membrane resistivity. Dendritic synaptic conductances decreased impedance magnitude at low frequencies; at higher frequencies, impedance magnitude increased.

View Article and Find Full Text PDF

Turtle visual cortex has three layers and receives direct input from the dorsolateral geniculate complex of the thalamus. The outer layer 1 contains several populations of interneurons, but their physiological properties have not been characterized. This study used intracellular recording methods followed by filling with Neurobiotin to characterize the morphology and physiology of two populations of layer 1 interneurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!