Response inhibition is sensitive to unexpected changes in the environment triggered by emotional stimuli. Whereas the impact of visual material on inhibition has been widely documented, the attention on the influence of olfactory stimuli has been neglected. Here, we examined the effect of pleasant (orange), unpleasant (trimethyloxazole), and control (clean air) odour primes in a stop-signal task. Twenty-five participants had to elicit or inhibit reach-to-press actions which allowed to examine the olfactory influences on both the planning (release phase) and the on-line control (reaching phase) of responses. Additionally, we manipulated the distance between the initial hand position and the target to be pressed (10 vs. 20 vs. 30 cm). The pleasant (vs. control) odour impaired inhibition, as reflected in slower stop-signal reaction times and higher release errors, indicating greater mobilisation of inhibitory resources by pleasant stimuli. Further, faster release responses were triggered by pleasant and unpleasant primes, supporting the idea of perceptual prioritisation of emotional (vs. non-emotional) stimuli. The olfactory manipulation did not affect the reaching phase of the responses. Instead, the distance manipulation modulated the reaching but not the release phase. These results extend the sparse literature on the influences of odour stimuli on response inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02699931.2021.1932428 | DOI Listing |
Food Chem
January 2025
Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China. Electronic address:
This study investigates the flavor perception of strong-aroma Baijiu through physiological electrical signals, focusing on electroencephalography (EEG) and electromyography (EMG) during olfactory and gustatory evaluations. It examines how sensory qualities, especially mellowness, influence brain and muscle responses. Results showed significant differences in EEG δ and β wavebands, mainly in the frontal and temporal lobes, reflecting varying brain activities across Baijiu types.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.
View Article and Find Full Text PDFOlfaction can aid individuals in finding genetically compatible mates in many animals, while high levels of mixed paternity may result from a limited ability to evaluate their mate's genetic profile against their own before mating. To test this suggestion and explore if olfaction may indeed influence mating patterns in birds, we combined published measures of olfactory ability with data on genetic mating pattern in the same species, across a phylogenetically broad range of species. We used three measures of olfaction: (1) olfactory bulb diameter, (2) olfactory bulb volume and (3) number of olfactory receptor genes (148, 134 and 48 species, respectively).
View Article and Find Full Text PDFJ Exp Biol
January 2025
Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-75005, Paris, France.
As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, France. Electronic address:
The ability to distinguish between individuals is crucial for social species and supports behaviors such as reproduction, hierarchy formation, and cooperation. In rodents, social discrimination relies on memory and the recognition of individual-specific cues, known as "individual signatures". While olfactory signals are central, other sensory cues - such as auditory, visual, and tactile inputs - also play a role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!