Dislocation-Mediated Conductivity in Oxides: Progress, Challenges, and Opportunities.

ACS Nano

Department of Materials Science & Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Ave., Urbana, Illinois 61801, United States.

Published: June 2021

Dislocations in ionic solids are topological extended defects that modulate composition, strain, and charge over multiple length scales. As such, they provide an extra degree of freedom to tailor ionic and electronic transport beyond limits inherent in bulk doping. Heterogeneity of transport paths as well as the ability to dynamically reconfigure structure and properties through multiple stimuli lend dislocations to particular potential applications including memory, switching, non-Ohmic electronics, capacitive charge storage, and single-atom catalysis. However, isolating, understanding, and predicting causes of modified transport behavior remain a challenge. In this Perspective, we first review existing reports of dislocation-modified transport behavior in oxides, as well as synthetic strategies and multiscale characterization routes to uncover processing-structure-property relationships. We outline a vision for future research, suggesting outstanding questions, tasks, and opportunities. Advances in this field will require highly interdisciplinary, convergent computational-experimental approaches, covering orders of magnitude in length scale, and spanning fields from microscopy and machine learning to electro-chemo-mechanics and point defect chemistry to transport-by-design and advanced manufacturing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c01557DOI Listing

Publication Analysis

Top Keywords

transport behavior
8
dislocation-mediated conductivity
4
conductivity oxides
4
oxides progress
4
progress challenges
4
challenges opportunities
4
opportunities dislocations
4
dislocations ionic
4
ionic solids
4
solids topological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!