The Poisson-Boltzmann (PB) implicit solvent model is a popular framework for studying the electrostatics of solvated biomolecules. In this model the dielectric interface between the biomolecule and solvent is often taken to be the molecular surface or solvent-excluded surface (SES), and the quality of the SES triangulation is critical in boundary element simulations of the model. This work compares the performance of the MSMS and NanoShaper surface triangulation codes for a set of 38 biomolecules. While MSMS produces triangles of exceedingly small area and large aspect ratio, the two codes yield comparable values for the SES surface area and electrostatic solvation energy, where the latter calculations were performed using the treecode-accelerated boundary integral (TABI) PB solver. However we found that NanoShaper is computationally more efficient and reliable than MSMS, especially when parameters are set to produce highly resolved triangulations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.26692DOI Listing

Publication Analysis

Top Keywords

msms nanoshaper
8
molecular surface
8
surface triangulation
8
triangulation codes
8
surface
5
comparison msms
4
nanoshaper molecular
4
codes tabi
4
tabi poisson-boltzmann
4
poisson-boltzmann solver
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!