Caffeine (CA) is accepted as a probe of cytochrome P450 1A2 enzyme (CYP1A2) activity and is commonly used in premature infants with great inter-individual variability of metabolism. To evaluate the change characteristics of CYP1A2 activity in premature infants, an ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed and optimized for the simultaneous quantitation of serum CA and its major metabolites, including paraxanthine (PX), theophylline (TP) and theobromine (TB), in premature infants. A C column and gradient elution with 0.1% formic acid in methanol and 0.1% formic acid in water at a flow rate of 0.3 mL/min were used for compound separation. The mass spectrometer monitored the transitions of CA (m/z 195.0 → 138.0), CA-d9 (m/z 204.0 → 144.1), PX (m/z 181.0 → 124.1), TP (m/z 181.0 → 123.9) and TB (m/z 181.0 → 138.0) using multiple reaction monitoring in positive ion mode. CYP1A2 activity was evaluated by serum molar concentration ratios of CA and its metabolites. The results showed that CYP1A2 has a significant positive correlation with the clearance of CA, and was affected by current weight and CYP1A2*1C. The results suggested that the serum concentration ratios of CA metabolites could be used to predict the changes in CYP1A2 enzyme activity in premature infants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.5141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!