Vimentin affects colorectal cancer proliferation, invasion, and migration via regulated by activator protein 1.

J Cell Physiol

Department of Gastrointestinal Surgery 2 Section, Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Published: November 2021

Uncontrolled recurrence and metastasis are important reasons for the high mortality rate of malignant tumors. Vimentin is positively correlated with the degree of malignancy of cancer cells. Vimentin is also highly expressed in colorectal cancer (CRC) cells and plays a critical role in the metastasis and prognosis of CRC. However, the molecular mechanism of vimentin in the progression of CRC is incompletely understood. Therefore, the most active regions (nucleotides: 785-1085 nt) of the vimentin promoter in CRC were identified using luciferase experiments. By transcription factor sequence search and mutation analysis, the activator protein 1 (AP-1) binding site in the region of 785-1085 nt was confirmed. The vimentin promoter activity was enhanced by overexpression of AP-1. The electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed that the binding site was recognized by AP-1. By cell proliferation assay, colony-forming assay, scratch-wound assay, cell migration assay, and cell invasion assay, we demonstrated that the AP-1 overexpression increased CRC cell proliferation, migration, and invasion. However, when vimentin was knocked down by vimentin small hairpin RNA in the CRC cell of AP-1 overexpression, this trend disappeared. Animal experiments and immunohistochemistry showed that AP-1 promoted tumor growth by regulating the vimentin gene. In summary, AP-1 affected metastasis, invasion of CRC cells in vitro, and tumor growth in vivo by activating the vimentin promoter. This study might provide new insights into the molecular mechanisms of the development of CRC and provide potential therapeutic targets for CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.30402DOI Listing

Publication Analysis

Top Keywords

vimentin promoter
12
vimentin
10
crc
9
colorectal cancer
8
activator protein
8
crc cells
8
binding site
8
cell proliferation
8
assay cell
8
ap-1 overexpression
8

Similar Publications

Astragali Radix-Angelicae Sinensis Radix inhibits the activation of vascular adventitial fibroblasts and vascular intimal proliferation by regulating the TGF-β1/Smad2/3 pathway.

J Ethnopharmacol

December 2024

School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, Changsha City, Hunan Province, China410208; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, Changsha 410208, China. Electronic address:

Ethnopharmacological Relevance: Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia.

Aim Of The Study: A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis.

View Article and Find Full Text PDF

Curcumin Alleviates Arecoline-induced Oral Submucous Fibrosis via the FOSL1/MAPK8 Axis.

Cell Biochem Biophys

December 2024

Department of Periodontal Mucosa, Changsha Stomatological Hospital, Changsha, Hunan, 410004, P.R. China.

Oral submucous fibrosis (OSF) is a precancerous lesion of the oral cavity. Areca nut consumption can cause OSF through sustained activation of buccal mucosal fibroblasts (BMFs). This study explored the effect of curcumin on arecoline-induced BMF activation and its mechanism of action.

View Article and Find Full Text PDF

Farnesoid X receptor (NR1H4/FXR) functions as a scavenger of lipid peroxide products and drives the proliferation and metastasis of various cancers. However, the underlying molecular mechanisms remain poorly understood. In our study, we found that the expression levels of FXR, vimentin and SLC7A11 were significantly higher in breast cancer tissues, particularly in metastatic cancer tissues compared to non-metastatic ones.

View Article and Find Full Text PDF

The role of TGF-β signaling in the epigenetic modifications involved in ovarian cancer is not fully understood. This study investigated the relationship between TGF-β signaling, epigenetic modifications, and cellular behaviors in ovarian cancer. We found that E-cadherin, a key cell adhesion molecule, underwent epigenetic silencing via promoter DNA hypermethylation in ovarian cancer cell lines and that this was accompanied by the upregulation of vimentin, which is indicative of a mesenchymal and invasive phenotype.

View Article and Find Full Text PDF

Cervical cancer (CC) is an important public health problem for women, gene expression patterns which were governed by epigenetic modifications can result in CC, CC-chemokine receptor 4 (CCR4) interacts with C-C-motif ligand 22 (CCL22) is associated with tumor progression or metastasis. A previous study by the present authors revealed the levels of chemokine CCL22 and its receptor CCR4 are increased in CC tissues, nevertheless, the regulatory mechanisms governing its expression remain poorly understood. The present study aimed to investigate the potential role of enhancer of zeste homolog 2 (EZH2)-induced epigenetic activation of CCL22/CCR4 and caused epithelial-to-mesenchymal transition (EMT) remodeling in CC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!