Experimental data on open circuit voltage characterization for Li-ion batteries.

Data Brief

Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Rd, Office#350, Storrs, CT 06269, USA.

Published: June 2021

In this article, we present the datasets collected from nine different Li-ion batteries. These datasets contain voltage, current and time measurements during a full charge-discharge cycle of a battery at very low current (that is nearly at rate). Such low current rate data is suitable for open circuit voltage characterization. The collection of this data was done through the use of an Arbin battery cycler and a thermal chamber was used to control the test temperature. Data were collected over a wide range of temperatures from C to C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141665PMC
http://dx.doi.org/10.1016/j.dib.2021.107071DOI Listing

Publication Analysis

Top Keywords

open circuit
8
circuit voltage
8
voltage characterization
8
li-ion batteries
8
low current
8
current rate
8
experimental data
4
data open
4
characterization li-ion
4
batteries article
4

Similar Publications

Enhanced Efficiency and Stability in Blade-Coated Perovskite Solar Cells through Using 2,3,4,5,6-Pentafluorophenylethylammonium Halide Additives.

ACS Appl Mater Interfaces

January 2025

Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.

The power conversion efficiency (PCE) of perovskite solar cells is sensitive to their method of fabrication as well as the combination of materials in the perovskite layer. Air knife-assisted blade coating enables good quality perovskite films to be formed but the device efficiencies still tend to lag behind those fabricated using spin-coated perovskite layers. Herein we report the use of three 2,3,4,5,6-pentafluorophenylethylammonium halides (FEAX, where X = I, Br or Cl) as additives in nitrogen knife-assisted blade-coated methylammonium lead iodide (MAPbI) perovskite solar cells.

View Article and Find Full Text PDF

Molecular Mechanisms of Nicergoline from Ergot Fungus in Blocking Human 5-HT3A Receptor.

J Microbiol Biotechnol

November 2024

Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea.

This study investigates the modulatory effects of nicergoline, a major bioactive compound derived from ergot fungus, on the 5-hydroxytryptamine 3A (5-HT3A) receptor. Utilizing a two-electrode voltage-clamp technique, we evaluated the impact of nicergoline on the 5-HT-induced inward current (I) in 5-HT3A receptors. Our findings reveal that nicergoline inhibits I in a reversible and concentration-dependent manner.

View Article and Find Full Text PDF

PbZrTiO cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples.

View Article and Find Full Text PDF

The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering.

View Article and Find Full Text PDF

Mechanically Resilient and Highly Efficient Flexible Perovskite Solar Cells with Octylammonium Acetate for Surface Adhesion and Stress Relief.

ACS Nano

January 2025

State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China.

Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!