The balance between detoxification and toxicity is linked to enzymes of the drug metabolism Phase I (cytochrome P450 or oxidoreductases) and phase II conjugating enzymes (such as the UGTs). After the reduction of quinones, the product of the reaction, the quinols-if not conjugated-re-oxidizes spontaneously to form the substrate quinone with the concomitant production of the toxic reactive oxygen species (ROS). Herein, we documented the modulation of the toxicity of the quinone menadione on a genetically modified neuroblastoma model cell line that expresses both the quinone oxidoreductase 2 (NQO2, E.C. 1.10.5.1) alone or together with the conjugation enzyme UDP-glucuronosyltransferase (UGT1A6, E.C. 2.4.1.17), one of the two UGT isoenzymes capable to conjugate menadione. As previously shown, NQO2 enzymatic activity is concomitant to massive ROS production, as previously shown. The quantification of ROS produced by the menadione metabolism was probed by electron-paramagnetic resonance (EPR) on cell homogenates, while the production of superoxide was measured by liquid chromatography coupled to mass spectrometry (LC-MS) on intact cells. In addition, the dysregulation of the redox homeostasis upon the cell exposure to menadione was studied by fluorescence measurements. Both EPR and LCMS studies confirmed a significant increase in the ROS production in the NQO2 overexpressing cells due to the fast reduction of quinone into quinol that can re-oxidize to form superoxide radicals. However, the effect of NQO2 inhibition was drastically different between cells overexpressing only NQO2 vs. both NQO2 and UGT. Whereas NQO2 inhibition decreases the amount of superoxide in the first case by decreasing the amount of quinol formed, it increased the toxicity of menadione in the cells co-expressing both enzymes. Moreover, for the cells co-expressing QR2 and UGT the homeostasis dysregulation was lower in presence of menadione than for the its counterpart expressing only QR2. Those results confirmed that the cooperation of the two enzymes plays a fundamental role during the cells' detoxification process. The fluorescence measurements of the variation of redox homeostasis of each cell line and the detection of a glucuronide form of menadiol in the cells co-expressing NQO2 and UGT1A6 enzymes further confirmed our findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142080 | PMC |
http://dx.doi.org/10.3389/fphar.2021.660641 | DOI Listing |
J Cell Mol Med
January 2025
Institute of Molecular Medicine, Huaqiao University, Quanzhou, China.
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China. Electronic address:
Yes-associated protein (YAP), a focal point of current biological research, is involved in regulating various life processes. In this report, live-cell fluorescence resonance energy transfer (FRET) imaging was employed to unravel the YAP complexes in MCF-7 cells. Fluorescence imaging of living cells co-expressing CFP (cyan fluorescent protein)-YAP and YFP (yellow fluorescent protein)-LATS1 (large tumor suppressor 1) plasmids revealed that YAP promoted LATS1 oligomerization around mitochondria.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.
Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.
Bio Protoc
January 2025
Department of Biological Sciences, Rutgers University, Newark, NJ, USA.
Neurons are highly polarized cells, with axons that may innervate distant target regions. In the brain, basal forebrain cholinergic neurons (BFCNs) possess extensive axons that project to several target regions such as the cortex, hippocampus, and amygdala, and may be exposed to a specific microenvironment in their axon targets that may have retrograde effects on neuronal health. Interestingly, BFCNs express the pan-neurotrophin receptor p75NTR throughout life while also concomitantly co-expressing all Trk receptors, making them capable of responding to both mature and precursor neurotrophins to promote survival or apoptosis, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!