Rett syndrome is a severe and progressive neurological disorder linked to mutations in the MeCP2 gene. It has been suggested that immune alterations may play an active role in the generation and/or maintenance of RTT phenotypes. However, there is no clear consensus about which pathways are regulated in vivo by MeCP2 in the context of immune activation. In the present work we set to characterize the role of MeCP2 during the progression of Experimental Autoimmune Encephalomyelitis (EAE) using the MeCP2 mouse model (MUT), which represents a condition of "MeCP2 function deficiency". Our results showed that MeCP2 deficiency increased the susceptibility to develop EAE, along with a defective induction of anti-inflammatory responses and an exacerbated MOG-specific IFNγ expression in immune sites. In MUT-EAE spinal cord, we found a chronic increase in pro-inflammatory cytokines gene expression (IFNγ, TNFα and IL-1β) and downregulation of genes involved in immune regulation (IL-10, FoxP3 and CX3CR1). Moreover, our results indicate that MeCP2 acts intrinsically upon immune activation, affecting neuroimmune homeostasis by regulating the pro-inflammatory/anti-inflammatory balance in vivo. These results are relevant to identify the potential consequences of MeCP2 mutations on immune homeostasis and to explore novel therapeutic strategies for MeCP2-related disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155097 | PMC |
http://dx.doi.org/10.1038/s41598-021-90517-8 | DOI Listing |
Biomed Pharmacother
January 2025
College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:
Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A receptor (AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an AR agonist, through in vitro and in vivo studies using R106W RTT model.
View Article and Find Full Text PDFJ Int Med Res
January 2025
Divisions of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Genetics Department, Hospital Sant Joan de Déu, Member of ERN-ITHACA, 08950 Esplugues de Llobregat, Spain.
: duplication syndrome (MDS) (MIM#300260) is a rare X-linked neurodevelopmental disorder. This study aims to (1) develop a specific clinical severity scale, (2) explore its correlation with clinical and molecular variables, and (3) automate diagnosis using the Face2gene platform. : A retrospective study was conducted on genetically confirmed MDS patients who were evaluated at a pediatric hospital between 2012 and 2024.
View Article and Find Full Text PDFCells
December 2024
Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the () gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
Background: Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!