Electromagnetically shielding textile materials, especially in professional or ordinary clothing, are used to protect an implanted pacemaker in the body. Alternatively, traditional textiles are known for their non-conductivity and transparency to an electromagnetic field. The main goal of this work was to determine whether the high moisture content (sweat) of the traditional textile structure significantly affects the resulting ability of the material to shield the electromagnetic field. Specifically, whether sufficient wetting of the traditional textile material can increase its electrical conductivity to match the electrically conductive textiles determined for shielding of the electromagnetic field. In this study, cotton and polyester knitted fabric samples were used, and two liquid medias were applied to the samples to simulate human sweating. The experiment was designed to analyse the factors that have a significant effect on the shielding effectiveness that was measured according to ASTM D4935. The following factors have a significant effect on the electromagnetic shielding effectiveness of moisturised fabric: squeezing pressure, drying time and type of liquid media. Additionally, the increase of electromagnetic shielding was up to 1 dB at 1.5 GHz frequency at the highest level of artificial sweat moisturised sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154889 | PMC |
http://dx.doi.org/10.1038/s41598-021-90516-9 | DOI Listing |
iScience
January 2025
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China.
Crack pattern-based metal grid film is an ideal candidate material for transparent electromagnetic interference shielding optical windows. However, achieving crack patterns with narrow grid spacing, small wire width, and high connectivity remains challenging. Herein, an aqueous acrylic colloidal dispersion was developed as a crack precursor for preparing crack patterns.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Textiles and Garment, Liaodong University, Dandong 118003, China.
The development of functional textiles has become a key focus in recent years, aiming to meet the diverse requirements of modern society. MXene has excellent conductivity, hydrophilicity, and UV resistance, and is widely used in electromagnetic shielding, sensors, energy storage, and photothermal conversion. Tussah silk (TS) is a unique natural textile raw material and has a unique jewelry luster, natural luxury, and a smooth and comfortable feel.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
Silicon carbide-based titanium silicon carbide (SiC-TiSiC) composites with low free alloy content and varying TiSiC contents are fabricated by two-step reactive melt infiltration (RMI) thorough complete reactions between carbon and TiSi alloy in SiC-C preforms obtained. The densities of SiC-C preform are tailored by the carbon morphology and volumetric shrinkage of slurry during the gel-casting process, and pure composites with variable TiSiC volume contents are successfully fabricated with different carbon contents of the preforms. Due to the increased TiSiC content in the obtained composites, both electrical conductivity and electromagnetic interference (EMI) shielding effectiveness improved progressively, while skin depth exhibited decreased consistently.
View Article and Find Full Text PDFMolecules
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!