AI Article Synopsis

  • The study explores the limitations of DNA-based microbiome analysis, particularly regarding the inability to distinguish between live and dead microorganisms.
  • A Benzonase-based approach (BDA) was tested, which effectively digests DNA from dead cells, thus providing a clearer picture of the living microbiome in skin samples.
  • The findings suggest that while BDA improves the accuracy of living microbiota assessments and reduces host DNA interference, it does not completely eliminate bias from low biomass samples.

Article Abstract

Background: The identification of microbiota based on next-generation sequencing (NGS) of extracted DNA has drastically improved our understanding of the role of microbial communities in health and disease. However, DNA-based microbiome analysis cannot per se differentiate between living and dead microorganisms. In environments such as the skin, host defense mechanisms including antimicrobial peptides and low cutaneous pH result in a high microbial turnover, likely resulting in high numbers of dead cells present and releasing substantial amounts of microbial DNA. NGS analyses may thus lead to inaccurate estimations of microbiome structures and consequently functional capacities.

Results: We investigated in this study the feasibility of a Benzonase-based approach (BDA) to pre-digest unprotected DNA, i.e., of dead microbial cells, as a method to overcome these limitations, thus offering a more accurate assessment of the living microbiome. A skin mock community as well as skin microbiome samples were analyzed using 16S rRNA gene sequencing and metagenomics sequencing after DNA extraction with and without a Benzonase digest to assess bacterial diversity patterns. The BDA method resulted in less reads from dead bacteria both in the skin mock community and skin swabs spiked with either heat-inactivated bacteria or bacterial-free DNA. This approach also efficiently depleted host DNA reads in samples with high human-to-microbial DNA ratios, with no obvious impact on the microbiome profile. We further observed that low biomass samples generate an α-diversity bias when the bacterial load is lower than 10 CFU and that Benzonase digest is not sufficient to overcome this bias.

Conclusions: The BDA approach enables both a better assessment of the living microbiota and depletion of host DNA reads. Video abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157445PMC
http://dx.doi.org/10.1186/s40168-021-01067-0DOI Listing

Publication Analysis

Top Keywords

host dna
12
dna
10
pre-digest unprotected
8
unprotected dna
8
assessment living
8
skin mock
8
mock community
8
benzonase digest
8
dna reads
8
skin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!