A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems. | LitMetric

Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems.

J Neural Eng

School of Automation Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.

Published: June 2021

AI Article Synopsis

  • Many EEG-based brain-computer interfaces (BCIs) typically require numerous channels which complicate setup and practical use.
  • The study introduces a new method called the cross-correlation based discriminant criterion (XCDC) to effectively identify and rank important channels for distinguishing between motor imagery tasks.
  • Testing on two datasets shows that XCDC can significantly reduce the number of channels needed without sacrificing classification accuracy, making BCI systems more efficient and user-friendly.

Article Abstract

Many electroencephalogram (EEG)-based brain-computer interface (BCI) systems use a large amount of channels for higher performance, which is time-consuming to set up and inconvenient for practical applications. Finding an optimal subset of channels without compromising the performance is a necessary and challenging task.In this article, we proposed a cross-correlation based discriminant criterion (XCDC) which assesses the importance of a channel for discriminating the mental states of different motor imagery (MI) tasks. Channels are ranked and selected according to the proposed criterion. The efficacy of XCDC is evaluated on two MI EEG datasets.On the two datasets, the proposed method reduces the channel number from 71 and 15 to under 18 and 11 respectively without compromising the classification accuracy on unseen data. Under the same constraint of accuracy, the proposed method requires fewer channels than existing channel selection methods based on Pearson's correlation coefficient and common spatial pattern. Visualization of XCDC shows consistent results with neurophysiological principles.This work proposes a quantitative criterion for assessing and ranking the importance of EEG channels in MI tasks and provides a practical method for selecting the ranked channels in the calibration phase of MI BCI systems, which alleviates the computational complexity and configuration difficulty in the subsequent steps, leading to real-time and more convenient BCI systems.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ac0583DOI Listing

Publication Analysis

Top Keywords

bci systems
16
cross-correlation based
8
based discriminant
8
discriminant criterion
8
channel selection
8
motor imagery
8
proposed method
8
channels
6
criterion
4
channel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!