This study focused on the Analytical Quality by Design (AQbD) optimization of the chromatographic separation and mass spectrometric detection of a wide group of structurally heterogeneous model pharmaceutical compounds (PhCs) and transformation products (TPs), chosen to cover the challenging issues of the co-presence of compounds characterized by (i) a wide range of physicochemical properties, (ii) the same mass transitions, and (iii) different ionisation modes. Italian consumption of PhCs were also considered as election criteria of target analytes. Octadecyl and pentafluorophenyl stationary phases, acetonitrile/methanol ratios and acidity of the eluents, column temperature, initial organic phase percentage, and elution gradient were investigated by AQbD, aiming at optimizing critical resolutions, sensitivities, and analysis time. Statistically significant models were obtained in most cases with fitting and cross-validation coefficients in the ranges of 0.681-0.998 and 0.514-0.967, respectively. After optimization, the analysis of target analytes was performed in a single chromatographic run, adopting a mixed acquisition mode based on scheduled acquisition windows comprising both single polarity and continuous polarity switching. For most investigated analytes the method provided detection limits in the sub-ng/L to low ng/L range, meeting for macrolides the sensitivity requested by the "Watch List" 2018/840/EU. The optimized method was applied to the direct injection analysis of PhCs and TPs in four wastewater treatment plant (WWTP) effluents and surface water (SW) samples collected in the receiving water bodies. Absolute values of matrix effect were found to be far higher than 20% for most target analytes in most samples. Seventeen PhCs and two TPs were quantified in at least one sample, at the wide concentration range of about 1-3200 ng/L. The most occurring PhCs in both WWTP effluents and SWs were levofloxacin (202-1239 and 100-830 ng/L), furosemide (865-3234 and 230-880 ng/L), ketoprofen (295-1104 and 270-490 ng/L), and ibuprofen (886-3232 and 690-1440 ng/L).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.462225DOI Listing

Publication Analysis

Top Keywords

target analytes
12
quality design
8
mass spectrometric
8
structurally heterogeneous
8
pharmaceutical compounds
8
surface water
8
water samples
8
direct injection
8
phcs tps
8
wwtp effluents
8

Similar Publications

LC-MS/MS Analyzing Praziquantel and 4-Hydroxypraziquantel Enantiomers in Black Goat Plasma and Mechanism of Stereoselective Pharmacokinetics.

Biomed Chromatogr

February 2025

Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.

Praziquantel (PZQ) is the most effective treatment for schistosomiasis, commonly administered as a racemic mixture of the two enantiomers. Despite many reports on the pharmacokinetics of PZQ, the stereoselective pharmacokinetics of PZQ and its major metabolite 4-hydroxypraziquantel (4-OH-PZQ) remain poorly understood in goats. In this study, the chiral LC-MS/MS method was further optimized for separating and quantifying PZQ, trans-4-OH-PZQ, and cis-4-OH-PZQ and their enantiomers and then applied for the molecular pharmacokinetics of three analytes in black goat plasma.

View Article and Find Full Text PDF

Objectives: Commercial fishing is one of the most dangerous industries in the United States, and although injuries have been a prominent focus for research, some health and safety risk factors such as sleep are understudied. In this paper, data from a multi-modal research study of sleep patterns, lifestyle factors, occupational exposures, medical histories, and health assessments in four U.S.

View Article and Find Full Text PDF

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Palm and palm kernel oils are preferred ingredients in industrial food processing for baked goods and chocolate-based desserts due to their unique properties, such as their distinctive melting behaviors. However, ongoing concerns about the social and environmental sustainability of palm oil production, coupled with consumer demands for palm oil-free products, have prompted the industry to seek alternatives which avoid the use of other tropical or hydrogenated fats. This project investigated replacing palm oils with chemically unhardened Swiss sunflower or rapeseed oils.

View Article and Find Full Text PDF

A comparative metabolomic study of three varieties of wild Rosa (, , and ) from a Kamchatka expedition (2024) was conducted via extraction with supercritical carbon dioxide modified with ethanol (EtOH), and detection of bioactive compounds was realized via tandem mass spectrometry. Several experimental conditions were investigated in the pressure range 50-350 bar, with the used volume of co-solvent ethanol in the amount of 2% in the liquid phase at a temperature in the range of 31-70 °C. The most effective extraction conditions are the following: pressure 200 Bar and temperature 55 °C for ; pressure 250 Bar and temperature 60 °C for ; pressure 200 Bar and temperature 60 °C for .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!