Coronavirus disease 2019 (COVID-19) is a fatal respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of potential drugs is urgently needed to control the pandemic. RNA dependent RNA polymerase (RdRp) is a conserved protein within RNA viruses and plays a crucial role in the viral life cycle, thus making it an attractive target for development of antiviral drugs. In this study, 101 quinoline and quinazoline derivatives were screened against SARS-CoV-2 RdRp using a cell-based assay. Three compounds , , and exhibit remarkable potency in inhibiting RNA synthesis driven by SARS-CoV-2 RdRp and relatively low cytotoxicity. Among these three compounds, showed the strongest inhibition upon RNA synthesis driven by SARS-CoV-2 RdRp, the resistance to viral exoribonuclease activity and the inhibitory effect on the replication of CoV, thus holding potential of being drug candidate for treatment of SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.1c00083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!