Eye Movements in Macular Degeneration.

Annu Rev Vis Sci

The Smith-Kettlewell Eye Research Institute, San Francisco, California 94115, USA; email:

Published: September 2021

In healthy vision, the fovea provides high acuity and serves as the locus for fixation achieved through saccadic eye movements. Bilateral loss of the foveal regions in both eyes causes individuals to adopt an eccentric locus for fixation. This review deals with the eye movement consequences of the loss of the foveal oculomotor reference and the ability of individuals to use an eccentric fixation locus as the new oculomotor reference. Eye movements are an integral part of everyday activities, such as reading, searching for an item of interest, eye-hand coordination, navigation, or tracking an approaching car. We consider how these tasks are impacted by the need to use an eccentric locus for fixation and as a reference for eye movements, specifically saccadic and smooth pursuit eye movements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8916065PMC
http://dx.doi.org/10.1146/annurev-vision-100119-125555DOI Listing

Publication Analysis

Top Keywords

eye movements
20
locus fixation
12
loss foveal
8
eccentric locus
8
oculomotor reference
8
reference eye
8
eye
6
movements macular
4
macular degeneration
4
degeneration healthy
4

Similar Publications

Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.

View Article and Find Full Text PDF

Solving arithmetic word problems requires individuals to create a correct mental representation, and this involves both text processing and number processing. The latter comprises understanding the semantic meaning of numbers (i.e.

View Article and Find Full Text PDF

Sensitivity of Functional Arterial Spin Labelling in Detecting Cerebral Blood Flow Changes.

Br J Hosp Med (Lond)

December 2024

Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China.

Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.

View Article and Find Full Text PDF

Eye metrics are a marker of visual conscious awareness and neural processing in cerebral blindness.

bioRxiv

January 2025

Laboratory of Brain and Cognition (LBC), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), USA.

Damage to the primary visual pathway can cause vision loss. Some cerebrally blind people retain degraded vision or sensations and can perform visually guided behaviors. These cases motivate investigation and debate on blind field conscious awareness and linked residual neural processing.

View Article and Find Full Text PDF

Introduction: Vestibular migraine (VM), particularly its chronic variant, poses a diagnostic challenge. Patients suffering from VM may not have the characteristic headaches associated with the dizziness. In these cases, a marker for migraine pathology in general could help appropriately diagnose certain types of dizziness as migrainous despite these patients not meeting current diagnostic criteria for VM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!