Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Predicting activation energies for reaction steps is essential for modeling catalytic processes, but accurate barrier simulations often require considerable computational expense, especially for electrochemical reactions. Given the challenges of barrier computations and the growing promise of electrochemical routes for various processes, generalizable energetic trends in electrochemistry can significantly aid in analyzing reaction networks and building microkinetic models. Herein, we employ density functional theory and machine learning nudged elastic band models to simulate electrochemical protonation of *C, *N, and *O monatomic adsorbates from hydronium on a series of transition metal surfaces. We observe a consistent trend of decreasing protonation reaction energies yet increasing activation barriers from *O to *N to *C. Analysis of bond orders and reaction pathways provides insight into the origin of the observed trends in protonation energetics. We hypothesize that these results are relevant for polyatomic adsorbates, which can simplify analysis of reaction mechanisms and inform catalyst design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c00800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!