A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generalizable Trends in Electrochemical Protonation Barriers. | LitMetric

Generalizable Trends in Electrochemical Protonation Barriers.

J Phys Chem Lett

Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.

Published: June 2021

Predicting activation energies for reaction steps is essential for modeling catalytic processes, but accurate barrier simulations often require considerable computational expense, especially for electrochemical reactions. Given the challenges of barrier computations and the growing promise of electrochemical routes for various processes, generalizable energetic trends in electrochemistry can significantly aid in analyzing reaction networks and building microkinetic models. Herein, we employ density functional theory and machine learning nudged elastic band models to simulate electrochemical protonation of *C, *N, and *O monatomic adsorbates from hydronium on a series of transition metal surfaces. We observe a consistent trend of decreasing protonation reaction energies yet increasing activation barriers from *O to *N to *C. Analysis of bond orders and reaction pathways provides insight into the origin of the observed trends in protonation energetics. We hypothesize that these results are relevant for polyatomic adsorbates, which can simplify analysis of reaction mechanisms and inform catalyst design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c00800DOI Listing

Publication Analysis

Top Keywords

electrochemical protonation
8
reaction
5
generalizable trends
4
electrochemical
4
trends electrochemical
4
protonation
4
protonation barriers
4
barriers predicting
4
predicting activation
4
activation energies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!