AI Article Synopsis

  • ROMK channels (Kir1.1) are being targeted for new diuretics that can help manage hypertension and heart failure.
  • The first compound (MK-7145) showed promising results in animal studies, including effective diuresis and lower blood pressure, but had a short duration of action requiring multiple doses.
  • A new compound (MK-8153) has been developed with a longer half-life, which may lead to steadier diuretic effects and improved patient tolerance.

Article Abstract

A renal outer medullary potassium channel (ROMK, Kir1.1) is a putative drug target for a novel class of diuretics with potential for treating hypertension and heart failure. Our first disclosed clinical ROMK compound, (MK-7145), demonstrated robust diuresis, natriuresis, and blood pressure lowering in preclinical models, with reduced urinary potassium excretion compared to the standard of care diuretics. However, projected to a short human half-life (∼5 h) that could necessitate more frequent than once a day dosing. In addition, a short half-life would confer a high peak-to-trough ratio which could evoke an excessive peak diuretic effect, a common liability associated with loop diuretics such as furosemide. This report describes the discovery of a new ROMK inhibitor (MK-8153), with a longer projected human half-life (∼14 h), which should lead to a reduced peak-to-trough ratio, potentially extrapolating to more extended and better tolerated diuretic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.1c00406DOI Listing

Publication Analysis

Top Keywords

romk inhibitor
8
human half-life
8
peak-to-trough ratio
8
discovery mk-8153
4
mk-8153 potent
4
potent selective
4
romk
4
selective romk
4
inhibitor novel
4
novel diuretic/natriuretic
4

Similar Publications

Article Synopsis
  • - Proton pump inhibitors (PPIs) are commonly used medications but can cause serious electrolyte imbalances, particularly low magnesium (hypomagnesaemia), which can lead to additional issues like low calcium (hypocalcaemia) and low potassium (hypokalaemia).
  • - Long-term PPI use disrupts intestinal pH and interferes with magnesium transport mechanisms, which can lead to increased potassium loss and complications in calcium regulation.
  • - These electrolyte imbalances can become severe and resistant to typical supplementation efforts, posing significant health risks for some patients who rely on chronic PPI therapy.
View Article and Find Full Text PDF

In patients with heart failure (HF) who respond inadequately to loop diuretic therapy, BMS-986308, an oral, selective, reversible renal outer medullary potassium channel (ROMK) inhibitor may represent an effective diuretic with a novel mechanism of action. We present data from the first-in-human study aimed to assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) following single ascending doses of BMS-986308 in healthy adult participants. Forty healthy participants, aged from 20 to 55 years, and body mass index (BMI) from 19.

View Article and Find Full Text PDF

Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na and K transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2.

View Article and Find Full Text PDF

Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.

View Article and Find Full Text PDF

Impaired distal renal potassium handling in streptozotocin-induced diabetic mice.

Am J Physiol Renal Physiol

July 2024

Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.

Diabetes is closely associated with K disturbances during disease progression and treatment. However, it remains unclear whether K imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K intake on systemic K balance and renal K handling in streptozotocin (STZ)-induced diabetic mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: