Bioprinting three-dimensional (3D) tissue equivalents have progressed tremendously over the last decade. 3D bioprinting is currently being employed to develop larger and more physiologic tissues, and it is of particular interest to generate vasculature in biofabricated tissues to aid better perfusion and transport of nutrition. Having an advantage over manual culture systems by bringing together biological scaffold materials and cells in precise 3D spatial orientation, bioprinting could assist in placing endothelial cells in specific spatial locations within a 3D matrix to promote vessel formation at these predefined areas. Hence, in the present study, we investigated the use of bioprinting to generate tissue-level capillary-like networks in biofabricated tissue constructs. First, we developed a bioink using collagen type-1 supplemented with xanthan gum (XG) as a thickening agent. Using a commercial extrusion-based multi-head bioprinter and collagen-XG bioink, the component cells were spatially assembled, wherein the endothelial cells were bioprinted in a lattice pattern and sandwiched between bioprinted fibroblasts layers. 3D bioprinted constructs thus generated were stable, and maintained structural shape and form. Post-print culture of the bioprinted tissues resulted in endothelial sprouting and formation of interconnected capillary-like networks within the lattice pattern and between the fibroblast layers. Bioprinter-assisted spatial placement of endothelial cells resulted in fabrication of patterned prevascularized constructs that enable potential regenerative applications in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.27838DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
tissue constructs
8
capillary-like networks
8
lattice pattern
8
bioprinting
5
cells
5
bioprinting microscale
4
microscale organization
4
organization vascularized
4
vascularized tissue
4

Similar Publications

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Narciclasine attenuates sepsis-associated acute kidney injury through the ESR1/S100A11 axis.

Funct Integr Genomics

January 2025

Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.

Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

The endothelium at the interface between tissues and in the bloodstream.

Clin Microbiol Rev

January 2025

Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.

SUMMARY is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels.

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!