PCL-1, a Trypsin-Resistant Peptide, Exerts Potent Activity Against Drug-Resistant Bacteria.

Probiotics Antimicrob Proteins

School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China.

Published: October 2021

Antimicrobial peptides (AMPs), which hold tremendous promise in overcoming the emergence of drug resistance, are limited in wide clinical applications due to their instability, especially against trypsin. Herein, we designed six peptide mutants based on the cathelicidin CATHPb2, followed by screening. Pb2-1, which showed the best activity against drug-resistant bacteria among these mutants, was selected to be combined with the trypsin inhibitory loop ORB-C to obtain two hybrid peptides: PCL-1 and Pb2-1TI. Notably, both of the hybrid peptides exhibited a remarkable enhancement in trypsin resistance compared with Pb2-1. The tests showed that PCL-1 displayed broad-spectrum antimicrobial activity that was superior to that of Pb2-1TI. In addition, PCL-1 had relatively lower cytotoxicity than Pb2-1TI towards the L02 and HaCaT cell lines and negligible hemolysis, as well as tolerance to high concentrations of salt, extreme pH, and temperature variations. In vivo, PCL-1 effectively improved the survival rate of mice that were systemically infected with drug-resistant Escherichia coli through efficient bacterial clearance from the blood and organs. With regard to mode of action, PCL-1 damaged the integrity of the bacterial cell membrane and attached to the membrane surface while bound to bacterial genomic DNA to eventually kill the bacteria. Altogether, the trypsin-resistant peptide PCL-1 is expected to be a candidate for the clinical treatment of bacterial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-021-09801-8DOI Listing

Publication Analysis

Top Keywords

trypsin-resistant peptide
8
activity drug-resistant
8
drug-resistant bacteria
8
hybrid peptides
8
pcl-1
7
pcl-1 trypsin-resistant
4
peptide exerts
4
exerts potent
4
potent activity
4
bacteria antimicrobial
4

Similar Publications

Short systemic half- life of Antimicrobial Peptides (AMP) is one of the major bottlenecks that limits their successful commercialization as therapeutics. In this work, we have designed analogs of the natural AMP Jelleine, obtained from royal jelly of apis mellifera. Among the designed peptides, J3 and J4 were the most potent with broad spectrum activities against a varied class of ESKAPE pathogens and fungus C.

View Article and Find Full Text PDF

Proximity-dependent biotinylation (PDB) techniques provide information about the molecular neighborhood of a protein of interest, yielding insights into its function and localization. Here, we assessed how different labeling enzymes and streptavidin resins influence PDB results. We compared the high-confidence interactors of the DNA/RNA-binding protein transactive response DNA-binding protein 43 kDa (TDP-43) identified using either miniTurbo (biotin ligase) or APEX2 (peroxidase) enzymes.

View Article and Find Full Text PDF

Engineering and Purification of Microcin C7 Variants Resistant to Trypsin and Analysis of Their Biological Activity.

Antibiotics (Basel)

August 2023

State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Rural Affairs Feed Industry Centre, China Agricultural University, Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China.

Microcin C7 (McC) as a viable form of antimicrobial has gained substantial attention due to its distinctive antimicrobial activity, by targeting aspartyl tRNA synthetase. McC can be a potential solution against pathogenic microbial infections in the postantibiotic era. However, considering that degradation by digestive enzymes can disrupt the function of this peptide in the gastrointestinal tract, in this study, we attempt to design McC variants to overcome several barriers that may affect its stability and biological activity.

View Article and Find Full Text PDF

The treatment of hard-to-heal chronic wounds is still a major medical problem and an economic and social burden. In this work, we examine the proregenerative potential of two peptides, G11 (a trypsin-resistant analogue of growth hormone-releasing hormone [GHRH]) and biphalin (opioid peptide), and their combination in vitro on human fibroblasts (BJ). G11, biphalin and their combination exhibited no toxicity against BJ cells.

View Article and Find Full Text PDF

PCL-1, a Trypsin-Resistant Peptide, Exerts Potent Activity Against Drug-Resistant Bacteria.

Probiotics Antimicrob Proteins

October 2021

School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, Jiangsu, China.

Antimicrobial peptides (AMPs), which hold tremendous promise in overcoming the emergence of drug resistance, are limited in wide clinical applications due to their instability, especially against trypsin. Herein, we designed six peptide mutants based on the cathelicidin CATHPb2, followed by screening. Pb2-1, which showed the best activity against drug-resistant bacteria among these mutants, was selected to be combined with the trypsin inhibitory loop ORB-C to obtain two hybrid peptides: PCL-1 and Pb2-1TI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!