A leucoanthocyanidin dioxygenase gene (RtLDOX2) from the feral forage plant Reaumuria trigyna promotes the accumulation of flavonoids and improves tolerance to abiotic stresses.

J Plant Res

The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China.

Published: September 2021

AI Article Synopsis

  • Reaumuria trigyna is a crucial forage plant in northwestern China's desert steppe, known for its ability to thrive in harsh conditions.
  • Researchers identified a leucoanthocyanidin dioxygenase gene, RtLDOX2, which is highly responsive to stress factors like salt and drought, suggesting its role in plant stress tolerance.
  • Transgenic plants overexpressing RtLDOX2 exhibited improved growth and increased levels of antioxidants, leading to better resilience against abiotic stresses by enhancing stress response mechanisms.

Article Abstract

Reaumuria trigyna, a Tamaricaceae archaic recretohalophyte, is an important feral forage plant in the desert steppe of northwestern China. We identified two significantly differentially expressed leucoanthocyanidin dioxygenase genes (RtLDOX/RtLDOX2) and investigated the function and characteristics of RtLDOX2. RtLDOX2 from R. trigyna was rapidly upregulated by salt, drought, and abscisic acid, consistent with the stress-related cis-regulatory elements in the promoter region. Recombinant RtLDOX2 converted dihydrokaempferol to kaempferol in vitro, and was thus interchangeable with flavonol synthase, a dioxygenase in the flavonoid pathway. Transgenic plants overexpressing RtLDOX2 accumulated more anthocyanin and flavonols under abiotic stresses, speculating that RtLDOX2 may act as a multifunctional dioxygenase in the synthesis of anthocyanins and flavonols. Overexpression of RtLDOX2 enhanced the primary root length, biomass accumulation, and chlorophyll content of salt-, drought-, and ultraviolet-B-stressed transgenic Arabidopsis. Antioxidant enzyme activity; proline content; and expression of antioxidant enzyme, proline biosynthesis, and ion-transporter genes were increased in transgenic plants. Therefore, RtLDOX2 confers tolerance to abiotic stress on transgenic Arabidopsis by promoting the accumulation of anthocyanins and flavonols. This in turn increases reactive oxygen species scavenging and activates other stress responses, such as osmotic adjustment and ion transport, and so improves tolerance to abiotic stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-021-01315-2DOI Listing

Publication Analysis

Top Keywords

tolerance abiotic
12
abiotic stresses
12
leucoanthocyanidin dioxygenase
8
rtldox2
8
feral forage
8
forage plant
8
reaumuria trigyna
8
improves tolerance
8
transgenic plants
8
anthocyanins flavonols
8

Similar Publications

Zea mays L. (Maize) is one of the most crucial world's crops, for their nutritional values, however, the water scarcity and consequent soil salinization are the major challenges that limit the growth and productivity of this plant, particularly in the semi-arid regions in Egypt. Recently, biopriming has been recognized as one of the most efficient natural-ecofriendly approaches to mitigate the abiotic salt stress on plants.

View Article and Find Full Text PDF

Genome-wide study of the R2R3-MYB gene family and analysis of HhMYB111r-induced salt tolerance in Hibiscus hamabo Sieb. et Zucc.

Plant Sci

December 2024

Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China. Electronic address:

Hibiscus hamabo Sieb. et Zucc. (H.

View Article and Find Full Text PDF

AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus.

Plant Physiol Biochem

December 2024

Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China. Electronic address:

Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus.

View Article and Find Full Text PDF

Response of ZmPHO1 family members to low phosphorus stress and association of natural variation in ZmPHO1;2a reveal the role of low phosphorus tolerance.

Plant Physiol Biochem

December 2024

Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China. Electronic address:

Phosphorus (Pi) is an essential nutrient for plants to sustain normal life processes. In this study, we found that the ZmPHO1 proteins had similar molecular weights and the same conserved domain. Phylogenetic and cis-acting element analysis showed that ZmPHO1s were divided into 4 subgroups, in which ZmPHO1;2a and ZmPHO1;2b were closely phylogenetic with OsPHO1;2b, and the promoter region of ZmPHO1s contained abundant abiotic stress-related elements.

View Article and Find Full Text PDF

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!