L-Theanine regulates glutamine metabolism and immune function by binding to cannabinoid receptor 1.

Food Funct

Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.

Published: July 2021

l-Theanine is a characteristic amino acid in tea with various effects including antioxidant and anti-inflammatory effects. Previously, most studies had reported that l-theanine regulates the immune function in vivo by inhibiting the expression of the inflammatory factors, but how l-theanine regulates the inflammatory factors' pathway is not known. In this study, we innovatively found the binding target of l-theanine in vivo-cannabinoid receptor 1, and demonstrated that l-theanine regulated the immune function and glutamine metabolism by competitively binding cannabinoid receptor 1. Mechanistically, l-theanine competitively binds cannabinoid receptor 1, leading to inhibition of cannabinoid receptor 1 activity, and regulates glutamine metabolism and immune function in normal and E44813-stressed rats. In normal rats, l-theanine inhibits ERK1/2 phosphorylation through Gβy by antagonizing cannabinoid receptor 1, thus affecting GS expression. From the point of view of immune signaling, after LTA antagonizes the activity of cannabinoid receptor 1, it relieves the inhibition of cannabinoid receptor 1 on COX-2 expression, downregulates Pdcd4 expression and NFκB, and ultimately enhances the expression of the anti-inflammatory factor IL-10. In E44813-stressed rats, l-theanine promotes the nuclear translocation of p-ERK1/2 by inhibiting the activity of cannabinoid receptor 1, and finally acts on GS. At the same time, it decreases the expression of the pro-inflammatory factor TNF-α and increases the expression of the anti-inflammatory factor IL-10 in stressed rats through the COX2-Pdcd4-NFκB-IL10 and TNFα pathways. In summary, these results demonstrate that l-theanine regulates glutamine metabolism and immune function by competitively binding to cannabinoid receptor 1.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1fo00505gDOI Listing

Publication Analysis

Top Keywords

cannabinoid receptor
36
immune function
20
l-theanine regulates
16
glutamine metabolism
16
regulates glutamine
12
metabolism immune
12
binding cannabinoid
12
l-theanine
10
receptor
10
cannabinoid
9

Similar Publications

Corrigendum to "Z-Ligustilide Alleviates Atherosclerosis by Reconstructing Gut Microbiota and Sustaining Gut Barrier Integrity through Activation of Cannabinoid Receptor 2" [Phytomedicine. 135(2024)156117].

Phytomedicine

January 2025

College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China; Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China. Electronic address:

View Article and Find Full Text PDF

Quinoline is a highly privileged scaffold with significant pharmacological potential. Introducing a carbonyl group into the quinoline ring generates a quinolone ring, which exhibits promising biological properties. Incorporating a carboxamide linkage at different positions within the quinoline and quinolone frameworks has proven an effective strategy for enhancing pharmacological properties, particularly anticancer potency.

View Article and Find Full Text PDF

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses.

View Article and Find Full Text PDF

2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!