Objective: The objective of this study was to improve head-neck kinematic predictions of a contemporary finite element (FE) head-neck model, assessed in rear impact scenarios (3-10 g), by including an accurate representation of the skin, adipose tissue, and passive muscle mechanical properties. The soft tissues of the neck have a substantial contribution to kinematic response, with the contribution being inversely proportional to the impact severity. Thus accurate representation of these passive tissues is critical for the assessment of kinematic response and the potential for crash induced injuries. Contemporary Human Body Models (HBMs) often incorporate overly stiff mechanical properties of passive tissues for numerical stability, which can affect the predicted kinematic response of the head and neck.

Methods: Soft tissue material properties including non-linearity, compression-tension asymmetry, and viscoelasticity were implemented in constitutive models for the skin, adipose, and passive muscle tissues, based on experimental data in the literature. A quasi-linear viscoelastic formulation was proposed for the skin, while a phenomenological hyper-viscoelastic model was used for the passive muscle and adipose tissues. A head-neck model extracted from a contemporary FE HBM was updated to include the new tissue models and assessed using head rotation angle for rear impact scenarios (3 g, 7 g, and 10 g peak accelerations), and compared to postmortem human surrogate (PMHS) data for 7 g impacts.

Results: The head rotation angle increased with the new material models for all three rear impact cases: (3 g: +43%, 7 g: +52%, 10 g: +71%), relative to the original model. The increase in head rotation was primarily attributed to the improved skin model, with the passive muscle being a secondary contributor to the increase in response. A 52% increase in head rotation for the 7 g impact improved the model response with respect to PMHS data, placing it closer to the experimental average, compared to the original model.

Conclusions: The improved skin, adipose tissue, and passive muscle material model properties, based on published experimental data, increased the neck compliance in rear impact, with improved correspondence to published PMHS test data for medium severity impacts. Future studies will investigate the coupled effect of passive and active muscle tissue for low severity impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2021.1918685DOI Listing

Publication Analysis

Top Keywords

passive muscle
24
skin adipose
16
rear impact
16
head rotation
16
adipose tissue
12
mechanical properties
12
kinematic response
12
passive
9
finite element
8
model
8

Similar Publications

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

For trained individuals such as athletes and musicians, learning often plateaus after extensive training, known as the "ceiling effect." One bottleneck to overcome it is having no prior physical experience with the skill to be learned. Here, we challenge this issue by exposing expert pianists to fast and complex finger movements that cannot be performed voluntarily, using a hand exoskeleton robot that can move individual fingers quickly and independently.

View Article and Find Full Text PDF

Little is known about the influence of fatigue in repeated overground sprinting on force-velocity properties in children and adolescents, while this ability to repeat sprints is important for future progress in rugby union. Sprint time decline is commonly used to assess fatigability. However, it does not provide data on biomechanical aspects of sprint performance such as maximal power, force, and velocity production.

View Article and Find Full Text PDF

While active back-support exoskeletons can reduce mechanical loading of the spine, current designs include only one pair of actuated hip joints combined with a rigid structure between the pelvis and trunk attachments, restricting lumbar flexion and consequently intended lifting behavior. This study presents a novel active exoskeleton including actuated lumbar and hip joints as well as subject-specific exoskeleton control based on a real-time active low-back moment estimation. We evaluated the effect of exoskeleton support with different lumbar-to-hip (L/H) support ratios on spine loading, lumbar kinematics, and back muscle electromyography (EMG).

View Article and Find Full Text PDF

Blood Flow Restricted Resistance Exercise in Well-Trained Men: Salivary Biomarker Responses and Oxygen Saturation Kinetics.

J Strength Cond Res

December 2024

Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas.

Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!