RNA Backbone Torsion and Pseudotorsion Angle Prediction Using Dilated Convolutional Neural Networks.

J Chem Inf Model

Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Queensland 4222, Australia.

Published: June 2021

RNA three-dimensional structure prediction has been relied on using a predicted or experimentally determined secondary structure as a restraint to reduce the conformational sampling space. However, the secondary-structure restraints are limited to paired bases, and the conformational space of the ribose-phosphate backbone is still too large to be sampled efficiently. Here, we employed the dilated convolutional neural network to predict backbone torsion and pseudotorsion angles using a single RNA sequence as input. The method called SPOT-RNA-1D was trained on a high-resolution training data set and tested on three independent, nonredundant, and high-resolution test sets. The proposed method yields substantially smaller mean absolute errors than the baseline predictors based on random predictions and based on helix conformations according to actual angle distributions. The mean absolute errors for three test sets range from 14°-44° for different angles, compared to 17°-62° by random prediction and 14°-58° by helix prediction. The method also accurately recovers the overall patterns of single or pairwise angle distributions. In general, torsion angles further away from the bases and associated with unpaired bases and paired bases involved in tertiary interactions are more difficult to predict. Compared to the best models in RNA-puzzles experiments, SPOT-RNA-1D yielded more accurate dihedral angles and, thus, are potentially useful as model quality indicators and restraints for RNA structure prediction as in protein structure prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.1c00153DOI Listing

Publication Analysis

Top Keywords

structure prediction
12
backbone torsion
8
torsion pseudotorsion
8
dilated convolutional
8
convolutional neural
8
paired bases
8
test sets
8
absolute errors
8
angle distributions
8
prediction
6

Similar Publications

Core-Shell Magnetic Particles: Tailored Synthesis and Applications.

Chem Rev

December 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China.

Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g.

View Article and Find Full Text PDF

Objectives: Despite advancements in modern medicine, the effectiveness of in vitro fertilization (IVF) remains low. This study aimed to assess the impact of specific features of T-shaped uterine cavity malformation and its intermediate forms on reproductive function and the effectiveness of assisted reproductive technology (ART), particularly on IVF results and pregnancy outcomes.

Methods: A prospective cohort study included 388 somatically healthy patients undergoing 3D ultrasound (US) examination of the uterine cavity before embryonic transfer for IVF treatment.

View Article and Find Full Text PDF

Computer-aided design of caffeic acid derivatives: free radical scavenging activity and reaction force.

J Mol Model

December 2024

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, Número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de Mexico, Mexico.

Context: Antioxidants are known to play a beneficial role in human health. Caffeic acid has been previously recognized as efficient in this context. However, such a capability can be enhanced through structural modification.

View Article and Find Full Text PDF

d-Allulose 3-epimerase (DAEase) derived from has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction.

View Article and Find Full Text PDF

Sperm Functional Status: A Multiparametric Assessment of the Fertilizing Potential of Bovine Sperm.

Vet Sci

December 2024

Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.

Sperm viability is routinely assessed for the quality control of cryopreserved bovine sperm batches but is not usually conclusive regarding their fertilizing potential. In this study, we investigated the fertility predictive value of bull sperm viability in combination with DNA integrity or the functional status of viable sperm. In addition to sperm viability, we flow cytometrically assessed the percentage of sperm with high DNA fragmentation index (%DFI) and the fraction of viable sperm with low intracellular Ca content and functional mitochondria using the Sperm Chromatin Structure Assay and a five-color staining panel in 791 and 733 cryopreserved batches with non-return rate (NRR) records after ≥100 first services, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!