Pesticides are chemicals widely used for agricultural industry, despite their negative impact on health and environment. Although various methods have been developed for pesticide degradation to remedy such adverse effects, conventional materials often take hours to days for complete decomposition and are difficult to recycle. Here, we demonstrate the rapid degradation of organophosphate pesticides with a Zr-based metal-organic framework (MOF), showing complete degradation within 15 min. MOFs with different active site structures (Zr node connectivity and geometry) were compared, and a porphyrin-based MOF with six-connected Zr nodes showed remarkable degradation efficiency with half-lives of a few minutes. Such a high efficiency was further confirmed in a simple flow system for several cycles. This study reveals that MOFs can be highly potent heterogeneous catalysts for organophosphate pesticide degradation, suggesting that coordination geometry of the Zr node significantly influences the catalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c00653DOI Listing

Publication Analysis

Top Keywords

zr-based metal-organic
8
pesticide degradation
8
degradation
5
role metal
4
metal nodes
4
nodes zr-based
4
metal-organic frameworks
4
frameworks catalytic
4
catalytic detoxification
4
detoxification pesticides
4

Similar Publications

This study employed some machine learning (ML) techniques with Python programming to forecast the adsorption capacity of MOF adsorbents for thiophenic compounds namely benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Five ML models were developed with the help of a dataset containing 676 rows to correlate the adsorbent features, adsorption conditions, and adsorbate characteristics to the MOF sample's sulfur adsorption capability. Among the ML approaches, MLP model achieved the best performance with a low mean squared error (MSE) of 0.

View Article and Find Full Text PDF

Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach.

View Article and Find Full Text PDF

Metal-organic cages based catalytic hybrid hydrogels for enhanced wound healing: Antibacterial and regenerative effects of Zr-MOC/chitosan composites hydrogel.

Int J Biol Macromol

January 2025

State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:

Metal-organic cages (MOCs), assembled by the coordination of metal nodes with organic ligands, offer excellent solvent dispersion, functionalization potential, and abundant binding sites, making them ideal for hybrid hydrogel synthesis. Herrin, a novel Zr-MOC/CS hybrid hydrogel was developed by crosslinking Zr-based metal-organic cages (Zr-MOC) and chitosan (CS) using dibenzaldehyde-functionalized polyethylene glycol (DF-PEG) as crosslinker, marking the first instance of incorporating Zr-MOC into a hydrogel matrix. The composite hydrogel leverages the catalytic activity of Zr-MOC to convert trace HO into hydroxyl radicals (·OH), delivering enhanced antibacterial performance.

View Article and Find Full Text PDF

Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.

View Article and Find Full Text PDF

A novel fluorescent sensor for highly sensitive detection of ascorbic acid in food based on inhibiting phosphatase-like activity of Zr-based MOF.

Food Chem

January 2025

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China. Electronic address:

Nanozyme-based sensors for detecting ascorbic acid (AA) generally depend on the reducibility of the analyte. However, these sensors are susceptible to interference from reducing substances in food. Herein, a novel fluorescent sensor for AA detection was developed based on inhibiting the phosphatase-like activity of a Zr-based metal-organic framework (Zr-CAU-28).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!