Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epoxy polymer-based dielectric materials play a crucial role in advanced electronic devices and power equipment. However, high voltage-stress applications impose stringent requirements, such as a high dielectric strength, on epoxy polymers. Previously reported studies have shown promising material architectures in the form of epoxy polymer-nanoparticle dielectrics, which can restrict the movement of high-energy electrons by the interface charge traps associated with the various interfacial regions. However, these high-energy electrons inevitably traverse the epoxy polymer matrix and destroy the molecular structure, thereby creating a weak link for dielectric breakdown. In this study, a general strategy is developed to improve the dielectric strength by constructing interface charge traps in the molecular structure of the epoxy polymer matrix, using the -CF group in partial replacement of the -CH group. The proposed strategy increases the dielectric strength (39.5 kV mm) and surface breakdown voltage (26.9 kV) of the epoxy polymer matrix by 22.08% and 13.3%, respectively, because the interface charge trap hinders the movement of high-energy electrons. At the same time, the strategy does not degrade the mechanical and thermal properties. The results hold potential for wide application in the manufacturing of advanced future electrical and electronic equipment requiring resilience to high-voltage stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c01933 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!