Background And Aims: Hepatoblastoma (HBL) is a devastating pediatric liver cancer with multiple treatment options, but it ultimately requires surgery for a cure. The most malicious form of HBL is a chemo-resistant aggressive tumor that is characterized by rapid growth, metastases, and poor response to treatment. Very little is known of the mechanisms of aggressive HBL, and recent focuses have been on developing alternative treatment strategies. In this study, we examined the role of human chromosomal regions, called aggressive liver cancer domains (ALCDs), in liver cancer and evaluated the mechanisms that activate ALCDs in aggressive HBL.
Results: We found that ALCDs are critical regions of the human genome that are located on all human chromosomes, preferentially in intronic regions of the oncogenes and other cancer-associated genes. In aggressive HBL and in patients with Hepatocellular (HCC), JNK1/2 phosphorylates p53 at Ser6, which leads to the ph-S6-p53 interacting with and delivering the poly(adenosine diphosphate ribose) polymerase 1 (PARP1)/Ku70 complexes on the oncogenes containing ALCDs. The ph-S6-p53-PARP1 complexes open chromatin around ALCDs and activate multiple oncogenic pathways. We found that the inhibition of PARP1 in patient-derived xenografts (PDXs) from aggressive HBL by the Food and Drug Administration (FDA)-approved inhibitor olaparib (Ola) significantly inhibits tumor growth. Additionally, this is associated with the reduction of the ph-S6-p53/PARP1 complexes and subsequent inhibition of ALCD-dependent oncogenes. Studies in cultured cancer cells confirmed that the Ola-mediated inhibition of the ph-S6-p53-PARP1-ALCD axis inhibits proliferation of cancer cells.
Conclusions: In this study, we showed that aggressive HBL is moderated by ALCDs, which are activated by the ph-S6-p53/PARP1 pathway. By using the PARP1 inhibitor Ola, we suppressed tumor growth in HBL-PDX models, which demonstrated its utility in future clinical models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463483 | PMC |
http://dx.doi.org/10.1002/hep.31919 | DOI Listing |
PLoS Comput Biol
October 2024
Clinic of Hematology and Medical Oncology, University Medical Centre Goettingen, Göttingen, Germany.
B cell receptor (BCR) signaling is required for the survival and maturation of B cells and is deregulated in B cell lymphomas. While proximal BCR signaling is well studied, little is known about the crosstalk of downstream effector pathways, and a comprehensive quantitative network analysis of BCR signaling is missing. Here, we semi-quantitatively modelled BCR signaling in Burkitt lymphoma (BL) cells using systematically perturbed phosphorylation data of BL-2 and BL-41 cells.
View Article and Find Full Text PDFCancers (Basel)
June 2024
Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Unlabelled: The pediatric liver cancers, hepatoblastoma and hepatocellular carcinoma, are dangerous cancers which often spread to the lungs. Although treatments with cisplatin significantly improve outcomes, cisplatin may not eliminate metastasis-initiating cells. Our group has recently shown that the metastatic microenvironments of hepatoblastoma contain Cancer Associated Fibroblasts (CAFs) and neuron-like cells, which initiate cancer spread from liver to lungs.
View Article and Find Full Text PDFHepatol Commun
February 2024
Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Background And Aims: Lung metastases are the most threatening signs for patients with aggressive hepatoblastoma (HBL). Despite intensive studies, the cellular origin and molecular mechanisms of lung metastases in patients with aggressive HBL are not known. The aims of these studies were to identify metastasis-initiating cells in primary liver tumors and to determine if these cells are secreted in the blood, reach the lung, and form lung metastases.
View Article and Find Full Text PDFCancers (Basel)
December 2022
Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Background And Aims: Hepatoblastoma (HBL), a deadly malignancy in children, is the most common type of pediatric liver cancer. We recently demonstrated that β-catenin, phosphorylated at S675 (ph-S675-β-catenin), causes pathological alterations in fibrolamellar hepatocellular carcinoma (FLC), by activating oncogenes and fibrotic genes via human genomic regions, known as cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs). The aim of this study was to determine the role of the ph-S675-β-catenin-TCF4-CEGRs/ALCDs pathway in HBL.
View Article and Find Full Text PDFArch Stem Cell Ther
January 2021
Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, USA.
Liver masses account for 5 to 6% of pediatric cancer, which includes hepatoblastoma (HBL) along with rare cases of hepatocellular carcinoma (HCC). The most dangerous form of pediatric liver cancer is aggressive HBL, which can be characterized by chemo-resistance and multiple nodules or metastases at diagnosis, all correlating with worse clinical prognosis. Despite intensive studies and a significant improvement in overall outcomes, very little is known about the key molecular pathways which determine the aggressiveness of pediatric liver cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!