Dengue virus (DENV) disease has become one of the major challenges in public health. Currently, there is no antiviral treatment for this infection. Since human transmission occurs via mosquitoes of the Aedes genus, most efforts have been focused on the control of this vector. However, these control strategies have not been totally successful, as reflected in the increasing number of DENV infections per year, becoming an endemic disease in more than 100 countries worldwide. Consequently, the development of a safe antiviral agent is urgently needed. In this sense, rational design approaches have been applied in the development of antiviral compounds that inhibit one or more steps in the viral replication cycle. The entry of viruses into host cells is an early and specific stage of infection. Targeting either viral components or cellular protein targets are an affordable and effective strategy for therapeutic intervention of viral infections. This review provides an extensive overview of the small organic molecules, peptides, and inorganic moieties that have been tested so far as DENV entry direct-acting antiviral agents. The latest advances based on computer-aided drug design (CADD) strategies and traditional medicinal chemistry approaches in the design and evaluation of DENV virus entry inhibitors will be discussed. Furthermore, physicochemical drug properties, such as solubility, lipophilicity, stability, and current results of pre-clinical and clinical studies will also be discussed in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929867328666210521213118 | DOI Listing |
Open Forum Infect Dis
January 2025
Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, USA.
Background: Dengue virus (DENV) is an arboviral pathogen found in >100 countries and a source of significant morbidity and mortality. While the mechanisms underpinning the pathophysiology of severe Dengue are incompletely understood, it has been hypothesized that antibodies directed against the DENV envelope (E) protein can facilitate antibody-dependent enhancement (ADE) of the infection, increasing the number of infected cells and the severity of disease in an exposed individual. Accordingly, there is interest in defining mechanisms for directly targeting DENV-infected cells for immunologic clearance, an approach that bypasses the risk of ADE.
View Article and Find Full Text PDFJ Nat Prod
January 2025
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
Eighteen cyclopenta[]benzopyran derivatives (- and -) and 10 limonoids (- and -) were identified from , including 10 undescribed compounds (-), all of which were identified by analysis of spectroscopic data, electronic circular dichroism calculations, and X-ray crystallography studies. Nine compounds displayed significant cytotoxic activity against three cancer cells, with IC values of 3-900 nM. Sixteen compounds demonstrated potent antiviral activity on the dengue virus, with selectivity index values between 13.
View Article and Find Full Text PDFVirology
December 2024
The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China. Electronic address:
The knowledge on the life cycle of flaviviruses is still incomplete, and no direct-acting antivirals against their infections are clinically available. Herein, by screening via a Zika virus (ZIKV) replicon assay, we found that the N-terminus of NS2A exhibited great tolerance to the insertions of different split fluorescent proteins (split-FPs). Furthermore, both ZIKV and dengue virus encoding a split-FP-tagged NS2A propagated efficiently, and the split-FP-tagged ZIKVs had good genetic stability.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.
View Article and Find Full Text PDFVaccine
January 2025
Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA. Electronic address:
At the 2023 Global Vaccine and Immunization Research Forum (GVIRF), researchers from around the world gathered in the Republic of Korea to discuss advances and opportunities in vaccines and immunization. Many stakeholders are applying the lessons of Covid-19 to future emergencies, by advancing early-stage development of prototype vaccines to accelerate response to the next emerging infectious disease, and by building regional vaccine research, development, and manufacturing capacity to speed equitable access to vaccines in the next emergency. Recent vaccine licensures include: respiratory syncytial virus vaccines, both for the elderly and to protect infants through maternal immunization; a new dengue virus vaccine; and licensure of Covid-19 vaccines previously marketed under emergency use authorizations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!