The Bacteroidetes phylum is renowned for its ability to degrade a wide range of complex carbohydrates, a trait that has enabled its dominance in many diverse environments. The best studied species inhabit the human gut microbiome and use polysaccharide utilization loci (PULs), discrete genetic structures that encode proteins involved in the sensing, binding, deconstruction, and import of target glycans. In many environmental species, polysaccharide degradation is tightly coupled to the phylum-exclusive type IX secretion system (T9SS), which is used for the secretion of certain enzymes and is linked to gliding motility. In addition, within specific species these two adaptive systems (PULs and T9SS) are intertwined, with PUL-encoded enzymes being secreted by the T9SS. Here, we discuss the most noteworthy PUL and non-PUL mechanisms that confer specific and rapid polysaccharide degradation capabilities to the Bacteroidetes in a range of environments. We also acknowledge that the literature showcasing examples of PULs is rapidly expanding and developing a set of assumptions that can be hard to track back to original findings. Therefore, we present a simple universal description of conserved PUL functions and how they are determined, while proposing a common nomenclature describing PULs and their components, to simplify discussion and understanding of PUL systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1758-2229.12980 | DOI Listing |
Neurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Faculty of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway.
Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFNutrients
December 2024
IFF, Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland.
Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).
Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.
Nutrients
December 2024
Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy.
Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!