Viologen is among the most attractive and easiest-to-use organic redox active group in many functional molecular assemblies. It plays crucial roles as an electron transfer mediator in the artificial photo-energy conversion systems and electron-transfer protein assemblies and as a building block of supramolecules. Its features include electrochemically reversible redox activity and stability. Strong blue color and tendency to dimerization of the one-electron reduced form, viologen mono-radical mono-cation, are remarkable. In this Account, we describe the use of viologen to give a powered movement of small molecules and motion of millimetre-sized macroscopic soft-matters and the use of viologen ionic liquid as electrochromic materials. Attractivities of the use of viologen units for powering and coloring are demonstrated and discussed. In particular, we highlight driving of mechanical movements by π-π stacking dimerization, incorporation in a hydrogel to attain highly deformable material, induction of 2D phase transformation, and sharp color change of very thin ionic liquid layer in a compartment-less electrochromic display.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202100082 | DOI Listing |
Appl Ergon
January 2025
Idaho National Laboratory, 1955 Fremont Avenue, Idaho Falls, ID, 83415, United States.
Human system interface design in industrial process control is guided by industry standards, human factors best practices, and domain-specific conventions, and often there is a conflict between one or more of the sources of design input for specific design elements. In the nuclear domain, one design element for which conflict arises is the use of color to represent equipment state. This study evaluates the tradeoffs associated with using color in a process control display versus using white and shades of gray.
View Article and Find Full Text PDFACS Nano
January 2025
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China.
Chiral plasmonic nanomaterials with fascinating physical and chemical properties show emerging chirality-dependent applications in photonics, catalysis, and sensing. The capability to precisely manipulate the plasmonic chirality in a broad spectral range plays a crucial role in enabling the applications of chiral nanomaterials in diverse and complex scenarios; however, it remains a challenge yet to be addressed. Here we demonstrate a strategy to significantly enhance the tunability of circular dichroism (CD) spectra of chiral nanomaterials by constructing core-shell hybrid metal-semiconductor structures with tailored shells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315000, China.
Power generation and architectural beauty are equally important for designing efficient and esthetically appealing bifacial perovskite solar cells (PSCs). In this work, efficient and multicolored p-i-n-structured PSCs are achieved by taking advantage of a dielectric/metal/dielectric (DMD)-type (MoO/Ni/Ag/MoO) transparent counter electrode. The MoO/Ni underlayer effectively promotes the formation of a continuous and conductive ultrathin Ag transparent film, especially the 1 nm Ni seed layer adjusts the interface energy level between perovskite/MoO and Ag, resulting in Ohmic contact of the electrode to promote charge extraction and collection.
View Article and Find Full Text PDFNutrition
December 2024
School of Life Sciences of Liaoning University, Shenyang, People's Republic of China. Electronic address:
The risk of glycolipid metabolic disorders (GLMDs)-which encompass type 2 diabetes mellitus, hyperlipidemia, hypertension, obesity, non-alcoholic fatty liver disease, and atherosclerosis--is rising gradually and posing challenges to health care. With the popularity of healthy lifestyles, anthocyanin-rich berries have emerged as a potential dietary intervention. This review uses bibliometric analysis to synthesize current research on the role of anthocyanins in relieving GLMDs.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China.
One of the most significant advances in stimulated emission depletion (STED) super-resolution microscopy is its capacity for dynamic super-resolution imaging of living cells, including the long-term tracking of interactions between various cells or organelles. Consequently, the multicolor STED plays a pivotal role in biological research. Despite the emergence of numerous fluorescent probes characterized by low toxicity, high stability, high brightness, and exceptional specificity, enabling dynamic imaging of living cells with multicolor STED, practical implementation of multicolor STED for live-cell imaging is influenced by several factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!