External conditions can drive biological rates in ectotherms by directly influencing body temperatures. While estimating the temperature dependence of performance traits such as growth and development rate is feasible under controlled laboratory settings, predictions in nature are difficult. One major challenge lies in translating performance under constant conditions to fluctuating environments. Using the butterfly Pieris napi as model system, we show that development rate, an important fitness trait, can be accurately predicted in the field using models parameterized under constant laboratory temperatures. Additionally, using a factorial design, we show that accurate predictions can be made across microhabitats but critically hinge on adequate consideration of non-linearity in reaction norms, spatial heterogeneity in microclimate and temporal variation in temperature. Our empirical results are also supported by a comparison of published and simulated data. Conclusively, our combined results suggest that, discounting direct effects of temperature, insect development rates are generally unaffected by thermal fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.13779 | DOI Listing |
J Phys Chem A
January 2025
University of Göttingen, Institute for Physical Chemistry, Tammannstraße 6, 37077,Göttingen Germany.
Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.
View Article and Find Full Text PDFJSES Int
November 2024
Queensland Unit for Advanced Shoulder Research (QUASR), Queensland University of Technology, Brisbane, Australia.
Background: Frozen shoulder (FS) is a debilitating inflammatory condition affecting the shoulder capsule that causes significant pain and stiffness. Its etiology, pathophysiology, and treatment remain poorly understood. Although regarded as self-limiting, FS can have profound implications on the activities of daily living and usually takes 1-4 years to resolve on its own accord.
View Article and Find Full Text PDFInsect Sci
January 2025
EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France.
Polyphagous insect species develop using multiple host plants. Often considered beneficial, polyphagy can also be costly as host nutritional quality may vary. Drosophila suzukii (Matsumura) is an invasive species that can develop on numerous fruit species over the annual cycle.
View Article and Find Full Text PDFClin Auton Res
January 2025
Exercise Research Laboratory (LAPEX), School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, 750, Felizardo Street, Porto Alegre, RS, 90690-200, Brazil.
Purpose: The present review investigates the responses of heart rate variability indices following high-intensity interval aerobic exercise, comparing it with moderate-intensity continuous exercise in adults, with the aim of informing clinical practice.
Methods: Searches were conducted in four databases until March 2023. Eligible studies included randomized controlled trials that assessed heart rate variability indices such as the standard deviation of normal-to-normal heartbeat intervals (SDNN), the root mean square of successive differences (RMSSD), the proportion of the number of pairs of successive normal-to-normal (NN or R-R) intervals that differ by more than 50 ms (NN50) divided by the total number of NN intervals (pNN50), power in high frequency range (HF), power in low frequency range (LF), and LF/HF before and after high-intensity interval and moderate-intensity continuous aerobic exercise.
Nat Commun
January 2025
Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!