A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects. | LitMetric

Previous studies have shown insufficient dispersion and thermal stability of nanofluids for high-temperature carbon capture and storage applications. Compared to the other NPs, TiO nanofluids exhibit superior stability due to their high zeta potential. In previous studies, TiO nanofluids have shown superior performance in heat transfer and cooling applications along with importing the stability of other nanofluids like SiO in form of nanocomposites. Therefore, in this study, a nanofluid formulation consisting of titania nanofluid in a base solution of ethylene glycol (EG) with different co-stabilizers such as surfactants was synthesized for better dispersion stability, enhanced electrical, and rheological properties especially for the use in high-temperature industrial applications which include carbon capture and storage along with enhanced oil recovery. The formulated nanofluid was investigated for stability using dynamic light scattering (DLS) study and electrical conductivity. Additionally, the formulated nanofluid was also examined for thermal stability at high temperatures using an electrical conductivity study followed by rheological measurements at 30 and 90 °C. At a high temperature, the shear-thinning behavior of EG was found highly affected by shear rate; however, this deformation was controlled using TiO nanoparticles (NPs). Furthermore, the role of surfactant was also investigated on dispersion stability, electrical conductivity followed by viscosity results, and it was found that the nanofluid is superior in presence of anionic surfactant sodium dodecyl sulfate (SDS) as compared to nonionic surfactant Triton X-100 (TX-100). The inclusion of ionic surfactant provides a charged layer of micelles surrounding the core of a NP and it produced additional surface potential. Consequently, it increases the repulsive force between two adjacent NPs and renders a greater stability to nanofluid while nonionic surfactant allowed monomers to adsorb on the surface of NP via hydrophobic interaction and enhances the short-range interparticle repulsion, to stabilize nanofluid. This makes titania nanofluid suitable for widespread high-temperature applications where conventional nanofluids face limitations. Finally, the application of the synthesized titania nanofluids was explored for the capture and transport of CO where the inclusion of the anionic surfactant was found to increase the CO capturing ability of titania nanofluids by 140-220% (over the conventional nanofluid) while also showing superior retention at both investigated temperatures. Thus, the study promotes the role of novel surfactant-treated titania nanofluids for carbon removal and storage and recommends their applications involving carbonated fluid injection (CFI) to carbon utilization in oilfield applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14570-6DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
12
titania nanofluids
12
nanofluid
10
rheological properties
8
carbon utilization
8
previous studies
8
stability
8
thermal stability
8
nanofluids
8
stability nanofluids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!