An extract of date (fruit of a palm tree) residue plus food-grade glutamate, acetic acid, and yeast extract (date residue extract mix, DREM) has been successfully fermented with using Lactobacillus brevis JCM 1059T to produce gamma-aminobutyric acid (GABA). Here, mouse splenocytes were found to be viable when supplemented with DREM and fermented DREM containing GABA (fDREM). The addition of DREM and fDREM resulted in the secretion of tumor necrosis factor (TNF)-α from the splenocytes, fDREM being more effective than DREM. The TNF-α secretion with DREM was elevated by exogenous addition of GABA and that with fDREM was in part mediated via A-type GABA receptors. Contrary to general understanding of the suppressive effects of GABA on various biological functions, our findings suggest that GABA-containing fDREM arguments the immune function as a food and pharmaceutical material.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbab093DOI Listing

Publication Analysis

Top Keywords

residue extract
8
extract mix
8
gamma-aminobutyric acid
8
immune function
8
mouse splenocytes
8
drem fermented
8
gaba fdrem
8
drem
6
gaba
5
fdrem
5

Similar Publications

Protein Secondary Structure Prediction (PSSP) is regarded as a challenging task in bioinformatics, and numerous approaches to achieve a more accurate prediction have been proposed. Accurate PSSP can be instrumental in inferring protein tertiary structure and their functions. Machine Learning and in particular Deep Learning approaches show promising results for the PSSP problem.

View Article and Find Full Text PDF

The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time.

View Article and Find Full Text PDF

Exploiting agri-food residues for kombucha tea and bacterial cellulose production.

Int J Biol Macromol

January 2025

NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy. Electronic address:

Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.

View Article and Find Full Text PDF

The recent unauthorization of antiviral drugs in food-producing animals according to Commission Delegated Regulation (EU) 2022/1644 have increased the need for food control laboratories to develop analytical methods and perform official controls. In this work, a simple and fast analytical methodology was developed for the simultaneous determination of 21 antiviral drugs in chicken muscle and liver by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Chromatographic separation was achieved by an HILIC BEH amide column; followed by detection with a electrospray ionization source in positive and negative modes.

View Article and Find Full Text PDF

Green process for xylo-oligosaccharide production from acetic acid hydrolysis of sugarcane bagasse by an integrated membrane technology and activated carbon adsorption.

J Environ Manage

January 2025

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

Xylooligosaccharides (XOS), consisting 2-6 xylose residues, are a new type of prebiotic and functional oligosaccharides, and can usually be produced from the xylan-riched lignocellulosic biomass by acetic acid (HAc) hydrolysis, while the waste HAc was a problem to the environment. In this study, the main aim was to recover and reuse the waste HAc in XOS production. First, it was found that a temperature of 190 °C and a hydrolysis time of 60 min were favorable for XOS production by HAc hydrolysis, and the by-products xylose and furfural were the main inhibitors, hindering the reuse of the waste HAc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!