A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive Model Based on Health Data Analysis for Risk of Readmission in Disease-Specific Cohorts. | LitMetric

Background: Intervention planning to reduce 30-day readmission post-acute myocardial infarction (AMI) in an environment of resource scarcity can be improved by readmission prediction score. The aim of study is to derive and validate a prediction model based on routinely collected hospital data for identification of risk factors for all-cause readmission within zero to 30 days post discharge from AMI.

Methods: Our study includes 2,849 AMI patient records (January 2005 to December 2014) from a tertiary care facility in India. EMR with ICD-10 diagnosis, admission, pathological, procedural and medication data is used for model building. Model performance is analyzed for different combination of feature groups and diabetes sub-cohort. The derived models are evaluated to identify risk factors for readmissions.

Results: The derived model using all features has the highest discrimination in predicting readmission, with AUC as 0.62; (95 percent confidence interval) in internal validation with 70/30 split for derivation and validation. For the sub-cohort of diabetes patients (1359) the discrimination is slightly better with AUC 0.66; (95 percent CI;). Some of the positively associated predictive variables, include age group 80-90, medicine class administered during index admission (Anti-ischemic drugs, Alpha 1 blocker, Xanthine oxidase inhibitors), additional procedure in index admission (Dialysis). While some of the negatively associated predictive variables, include patient demography (Male gender), medicine class administered during index admission (Betablocker, Anticoagulant, Platelet inhibitors, Anti-arrhythmic).

Conclusions: Routinely collected data in the hospital's clinical and administrative data repository can identify patients at high risk of readmission following AMI, potentially improving AMI readmission rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120669PMC

Publication Analysis

Top Keywords

model based
8
risk readmission
8
routinely collected
8
risk factors
8
associated predictive
8
predictive variables
8
variables include
8
medicine class
8
class administered
8
administered admission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!