Algorithmic monoculture and social welfare.

Proc Natl Acad Sci U S A

Department of Computer Science, Cornell University, Ithaca, NY 14853

Published: June 2021

As algorithms are increasingly applied to screen applicants for high-stakes decisions in employment, lending, and other domains, concerns have been raised about the effects of algorithmic monoculture, in which many decision-makers all rely on the same algorithm. This concern invokes analogies to agriculture, where a monocultural system runs the risk of severe harm from unexpected shocks. Here, we show that the dangers of algorithmic monoculture run much deeper, in that monocultural convergence on a single algorithm by a group of decision-making agents, even when the algorithm is more accurate for any one agent in isolation, can reduce the overall quality of the decisions being made by the full collection of agents. Unexpected shocks are therefore not needed to expose the risks of monoculture; it can hurt accuracy even under "normal" operations and even for algorithms that are more accurate when used by only a single decision-maker. Our results rely on minimal assumptions and involve the development of a probabilistic framework for analyzing systems that use multiple noisy estimates of a set of alternatives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179131PMC
http://dx.doi.org/10.1073/pnas.2018340118DOI Listing

Publication Analysis

Top Keywords

algorithmic monoculture
12
unexpected shocks
8
monoculture social
4
social welfare
4
welfare algorithms
4
algorithms increasingly
4
increasingly applied
4
applied screen
4
screen applicants
4
applicants high-stakes
4

Similar Publications

The aim of this research is to create an automated system for identifying soil microorganisms at the genera level based on raw microscopic images of monocultural colonies grown in laboratory environment. The examined genera are: Fusarium, Trichoderma, Verticillium, Purpureolicillium and Phytophthora. The proposed pipeline deals with unprocessed microscopic images, avoiding additional sample marking or coloration.

View Article and Find Full Text PDF

Background: The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures.

View Article and Find Full Text PDF

First Report of Diplodia Shoot Blight and Canker Disease Caused by on Ponderosa Pine in Colorado, USA.

Plant Dis

November 2024

Colorado State University, Department of Agricultural Biology, 1177 Campus Delivery, Fort Collins, Colorado, United States, 80523;

Article Synopsis
  • Diplodia shoot blight and canker disease (DSB) is caused by the fungal pathogen Diplodia sapinea and primarily affects 2-3 needled pines, such as ponderosa pine, resulting in various symptoms including necrotic needles, cankers, and dieback.
  • The pathogen can exist without visible symptoms in trees, making it difficult to detect, and outbreaks are more common in stressed environments like nurseries and seed orchards.
  • Although D. sapinea has not been previously reported in Colorado, studies confirmed its presence and pathogenicity after observing symptoms in ponderosa pines in Wyoming in 2018 and discovering symptomatic trees in Colorado in 2021.
View Article and Find Full Text PDF

Effect of plant-derived microbial soil legacy in a grafting system-a turn for the better.

Microbiome

November 2024

Université de Rennes, CNRS, UMR 6553 ECOBIO (écosystèmes, biodiversité, évolution), Rennes, 35000, France.

Background: Plant-soil feedback arises from microbial legacies left by plants in the soil. Grafting is a common technique used to prevent yield declines in monocultures. Yet, our understanding of how grafting alters the composition of soil microbiota and how these changes affect subsequent crop performance remains limited.

View Article and Find Full Text PDF

Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa.

Cells

May 2024

Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.

The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!