Introduction: To determine the oxygenator impact on alterations of meropenem (MEM)/vaborbactam (VBR) in a contemporary neonatal/pediatric (1/4-inch) and adolescent/adult (3/8-inch) extra corporeal membrane oxygenation (ECMO) circuit including the Quadrox-i oxygenator.

Methods: 1/4-inch and 3/8-inch, simulated closed-loop ECMO circuits were prepared with a Quadrox-i pediatric and Quadrox-i adult oxygenator and blood primed. Additionally, 1/4-inch and 3/8-inch circuits were also prepared without an oxygenator in series. A one-time dose of MEM/VBR was administered into the circuits and serial pre- and post-oxygenator concentrations were obtained at 5 minutes, 1, 2, 3, 4, 5, 6, 8, 12, and 24-hour time points. MEM/VBR was also maintained in a glass vial and samples were taken from the vial at the same time periods for control purposes to assess for spontaneous drug degradation.

Results: For the 1/4-inch circuit, there was an approximate mean 55% MEM loss with the oxygenator in series and a mean 33%-40% MEM loss without an oxygenator in series at 24 hours. For the 3/8-inch circuit, there was an approximate mean 70% MEM loss with the oxygenator in series and a mean 30%-38% MEM loss without an oxygenator in series at 24 hours. For both the 1/4-inch circuit and 3/8-inch circuits with and without an oxygenator, there was <10% VBR loss for the duration of the experiment.

Conclusions: This ex-vivo investigation demonstrated substantial MEM loss within an ECMO circuit with an oxygenator in series with both sizes of the Quadrox-i oxygenator at 24 hours and no significant VBR loss. Further evaluations with multiple dose in-vitro and in-vivo investigations are needed before specific MEM/VBR dosing recommendations can be made for clinical application with ECMO.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02676591211018985DOI Listing

Publication Analysis

Top Keywords

oxygenator series
20
mem loss
16
loss oxygenator
16
oxygenator
9
oxygenator impact
8
membrane oxygenation
8
1/4-inch 3/8-inch
8
circuits prepared
8
3/8-inch circuits
8
1/4-inch circuit
8

Similar Publications

Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.

View Article and Find Full Text PDF

Mitochondria-localized dinuclear iridium(III) complexes for two-photon photodynamic therapy.

Dalton Trans

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

Photodynamic therapy (PDT), as a non-invasive cancer treatment, offers significant advantages including high temporal-spatial selectivity, minimal surgical intervention, and low toxicity, thereby garnering considerable research interest from across the world. In this study, we have developed a series of dinuclear cyclometalated Ir(III) complexes as potential two-photon photodynamic anticancer agents. These Ir(III) complexes demonstrate significant two-photon absorption (2PA) cross-sections ( = 66-166 GM) and specifically target mitochondria.

View Article and Find Full Text PDF

Hyperbaric Oxygen Therapy (HBOT) for Management of Complex Regional Pain Syndrome (CRPS).

Clin J Pain

January 2025

Department of Anesthesiology and Perioperative Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.

Objectives: Complex regional pain syndrome remains a challenging condition characterized by severe, persistent pain and a variety of inflammatory and trophic symptoms. This study aimed to analyze the current literature to evaluate hyperbaric oxygen therapy (HBOT)'s efficacy in treating complex regional pain syndrome (CRPS), focusing on both sympathetically-maintained pain (SMP) and sympathetically-independent pain (SIP) subtypes.

Methods: A comprehensive literature search was conducted in PubMed Clinical Queries using the MeSH term "Complex Regional Pain Syndromes" OR the keyword "CRPS" AND "Hyperbaric Oxygen Therapy" OR the keyword "HBOT".

View Article and Find Full Text PDF

Objectives: Analysis of current 2023-2024 (Mp) infection characteristics in adults.

Methods: A retrospective case series analysis was performed on polymerase chain reaction-positive adult patients admitted to the University Hospital of Marseille from April 2017 to June 2024. Clinical presentations, treatments, and outcomes were assessed.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!