Critical water temperature during water immersion at various atmospheric pressures.

J Appl Physiol (1985)

Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.

Published: June 1988

The present work was undertaken to determine the effect of atmospheric pressure [ranging from a high altitude of 4,300 m above sea level or 0.6 atmospheres absolute (ATA) to depths of 10 m deep or 2 ATA] on the critical water temperature (Tcw), defined as the lowest water temperature a subject can tolerate at rest for 2 h without shivering, of the unprotected subject during water immersion. Nine healthy males wearing only shorts were subjected to immersion to the neck in water at 0.6, 1, and 2 ATA while resting for 2 h. Continuous measurements included esophageal (Tes) and skin (Tsk) temperatures, direct heat loss from the skin (Htissue), and insulation of the tissue (Itissue). The Tcw was significantly higher at 0.6 ATA than 1 and 2 ATA: however, Tcw at 1 ATA was identical to that at 2 ATA. The metabolic heat production remained unchanged among the pressures. During the 2-h immersion in Tcw, Tes was identical among all atmospheric pressures: however, Tsk was significantly higher (P less than 0.05) at 0.6 ATA and was identical between 1 and 2 ATA. The overall mean Itissue was near maximal during immersion in Tcw in each pressure, and no difference was detected among the pressures. However, Itissue at the acral extremities (arm, hand, and foot) decreased significantly at 0.6 ATA, and subsequently heat loss from these parts was increased, which elevated an extremity-to-trunk heat loss ratio to 1.4 at 0.6 ATA from 1.1 at 1 and 2 ATA.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1988.64.6.2444DOI Listing

Publication Analysis

Top Keywords

water temperature
12
heat loss
12
ata
10
critical water
8
water immersion
8
atmospheric pressures
8
ata identical
8
identical ata
8
immersion tcw
8
water
5

Similar Publications

Wearable Fluidic Fabric with Excellent Heat Transfer Performance for Sports Recovery.

Adv Sci (Weinh)

January 2025

Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, China.

Rapid temperature contrast hydrotherapy by water immersion has been utilized by athletes for effective sports recovery. However, its application at some training or competition venues is limited by high water consumption, bucky size, personal hygiene, and inconvenience. Here, a novel portable system equipped with highly effective, lightweight, and hygienic wearable fluidic fabric device is reported, that replaces direct water immersion.

View Article and Find Full Text PDF

The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.

View Article and Find Full Text PDF

Vertical Farming Systems (VFS) emerge as an approach to optimize plant growth in urban and controlled environments, by enabling sustainable and intensive production in reduced spaces. VFS allow for greater control over growing conditions, such as light, temperature and humidity, resulting in higher quality crops and with less use of resources, such as water and fertilizers. This research investigates the effects of different lighting regimes (Constant and Gaussian) and spectral qualities (white, RBW, blue and red) on the growth, photosynthesis, and biomass accumulation of lentil microgreens () in VFS.

View Article and Find Full Text PDF

Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives.

RSC Adv

January 2025

Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium

Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.

View Article and Find Full Text PDF

Background: Hematoxylin and eosin (H&E) staining is widely considered to be the gold-standard diagnostic tool for histopathology evaluation. However, the fatty nature of some tissue types, such as breast tissue, presents challenges with cryo-sectioning, often resulting in artifacts that can make histopathologic interpretation and correlation with other imaging modalities virtually impossible. We present an optimized on-block H&E staining technique that improves contrast for identifying collagenous stroma during cryo-fluorescence tomography (CFT) sectioning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!