Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosula.

Plant Physiol Biochem

Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. Electronic address:

Published: August 2021

Drought stress is one of the main limiting factors in geographical distribution and production of Codonopsis pilosula. Understanding the biochemical and genetic information of the response of C. pilosula to drought stress is urgently needed for breeding tolerant varieties. Here, carbohydrates, namely trehalose, raffinose, maltotetraose, sucrose, and melezitose, significantly accumulated in C. pilosula roots under drought stress and thus served as biomarkers for drought stress response. Compared with those in the control group, the expression levels of key genes such as adenosine diphosphate glucose pyrophosphorylase, starch branching enzyme, granule-bound starch synthase, soluble starch synthase, galacturonate transferase, cellulose synthase A catalytic subunit, cellulase Korrigan in the carbohydrate biosynthesis pathway were markedly up-regulated in C. pilosula roots in the drought treatment group, some of them even exceeded 70%. Notably, and that of key genes including trehalose-6-phosphatase, trehalose-6-phosphate phosphatase, galactinol synthase, and raffinose synthase in the trehalose and raffinose biosynthesis pathways was improved by 12.6%-462.2% in C. pilosula roots treated by drought stress. The accumulation of carbohydrates in C. pilosula root or rhizosphere soil was correlated with microbiome variations. Analysis of exogenous trehalose and raffinose confirmed that increased carbohydrate content improved the drought tolerance of C. pilosula in a dose-dependent manner. This study provided solid foundation for breeding drought-tolerant C. pilosula varieties and developing drought-resistant microbial fertilizers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.05.004DOI Listing

Publication Analysis

Top Keywords

drought stress
20
trehalose raffinose
12
pilosula roots
12
pilosula
9
carbohydrate content
8
drought
8
drought tolerance
8
codonopsis pilosula
8
pilosula drought
8
roots drought
8

Similar Publications

Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.

View Article and Find Full Text PDF

In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!