Non-segmented MRI brain images are used for the identification of new Magnetic Resonance Imaging (MRI) biomarkers able to differentiate between schizophrenic patients (SCZ), major depressive patients (MD) and healthy controls (HC). Brain texture measures such as entropy and contrast, capturing the neighboring variation of MRI voxel intensities, were computed and fed into deep learning technique for group classification. Layer-wise relevance was applied for the localization of the classification results. Texture feature map of non-segmented brain MRI scans were extracted from 141 SCZ, 103 MD and 238 HC. The gray level co-occurrence matrix (GLCM) was calculated on a voxel-by-voxel basis in a cube of voxels. Deep learning tested if texture feature map could predict diagnostic group membership of three classes under a binary classification (SCZ vs. HC, MD vs. HC, SCZ vs. MD). The method was applied in a repeated nested cross-validation scheme and cross-validated feature selection. The regions with the highest relevance (positive/negative) are presented. The method was applied on non-segmented images reducing the computation complexity and the error associated with segmentation process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060641 | PMC |
http://dx.doi.org/10.1016/j.pscychresns.2021.111303 | DOI Listing |
BioData Min
January 2025
Department of Statistics, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
Background: This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Information Technology, Vardhaman College of Engineering, Shamshabad, Hyderabad, India.
Background: Biomedical text mining is a technique that extracts essential information from scientific articles using named entity recognition (NER). Traditional NER methods rely on dictionaries, rules, or curated corpora, which may not always be accessible. To overcome these challenges, deep learning (DL) methods have emerged.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, Belgrade, Serbia.
The expansion of LEAN and small batch manufacturing demands flexible automated workstations capable of switching between sorting various wastes over time. To address this challenge, our study is focused on assessing the ability of the Segment Anything Model (SAM) family of deep learning architectures to separate highly variable objects during robotic waste sorting. The proposed two-step procedure for generic versatile visual waste sorting is based on the SAM architectures (original SAM, FastSAM, MobileSAMv2, and EfficientSAM) for waste object extraction from raw images, and the use of classification architecture (MobileNetV2, VGG19, Dense-Net, Squeeze-Net, ResNet, and Inception-v3) for accurate waste sorting.
View Article and Find Full Text PDFSci Rep
January 2025
Biotechnology Major, Sangmyung University, Seoul, 03016, South Korea.
Numerous studies have proven the potential of deep learning models for classifying wildlife. Such models can reduce the workload of experts by automating species classification to monitor wild populations and global trade. Although deep learning models typically perform better with more input data, the available wildlife data are ordinarily limited, specifically for rare or endangered species.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
The diverse types and sizes, proximity to non-nodule structures, identical shape characteristics, and varying sizes of nodules make them challenging for segmentation methods. Although many efforts have been made in automatic lung nodule segmentation, most of them have not sufficiently addressed the challenges related to the type and size of nodules, such as juxta-pleural and juxta-vascular nodules. The current research introduces a Squeeze-Excitation Dilated Attention-based Residual U-Net (SEDARU-Net) with a robust intensity normalization technique to address the challenges related to different types and sizes of lung nodules and to achieve an improved lung nodule segmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!