According to numerous epidemiological studies, aspirin is a non-steroidal anti-inflammatory drug (NSAID) that reduces the occurrence and mortality of colorectal cancer (CRC). However, the underlying mechanisms are not well identified. In an effort to fill these gaps, we administered aspirin on mice one day before induction in an azoxymethane (AOM)/dextran sulfate sodium (DSS) induced CRC model. In this study, we assessed the effects of aspirin on tumorigenesis and tumor cell proliferation. Multi-layer analyses were carried out to identify changes in cytokines, metabolites, level of gene expressions, and proteins associated with tumorigenesis and aspirin treatment. The results showed that aspirin-treated mice developed fewer colon tumors in response to AOM/DSS, and aspirin can actively block cyclooxygenase (COX) metabolism and reduce levels of pro-inflammatory cytokines. In addition, the transcriptomic and proteomic analyses both indicated that aspirin has an inhibitory effect on the Wnt pathway. The in vitro results further indicated that aspirin inhibits WNT6 production, possibly by suppressing its transcription factor NR4A2, which in turn is regulated by prostaglandin E2, thereby ultimately inhibiting the Wnt pathway. These findings improve our understanding of the mechanisms behind aspirin's chemoprevention effect on CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2021.174173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!