A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adding marrow R2∗ to proton density fat fraction improves the discrimination of osteopenia and osteoporosis in postmenopausal women assessed with 3D FACT sequence. | LitMetric

AI Article Synopsis

  • This study aimed to assess how a new imaging technique, the Fat Analysis & Calculation Technique, can enhance the detection of osteopenia and osteoporosis by measuring fat content in bone marrow.
  • In a group of 99 postmenopausal women, the new imaging showed great reliability and significant differences in fat measurements among those with normal bone mass, osteopenia, and osteoporosis.
  • The combination of two fat measurements (proton density fat fraction and R2∗) provided higher diagnostic accuracy for identifying osteoporosis compared to using either measurement alone.

Article Abstract

Objective: To evaluate the role of three-dimensional Fat Analysis & Calculation Technique sequence in improving the diagnostic accuracy for the detection of osteopenia and osteoporosis by simultaneous quantification of proton density fat fraction (PDFF) and fat-corrected R2∗.

Methods: Fat Analysis & Calculation Technique imaging of lumbar spine was obtained in 99 postmenopausal women including 52 normal bone mass, 29 osteopenia, and 18 osteoporosis. The diagnostic performance of PDFF and R2∗ in the differentiation of different bone-density groups was evaluated with the receiver operating characteristic curve.

Results: The reproducibility of PDFF and R2∗ measures was satisfactory with the root mean square coefficient of variation, 2.16% and 2.70%, respectively. The intra- and interobserver agreements for the PDFF and R2∗ were excellent with the intraclass correlation coefficient > 0.9 for all. There were significant differences in PDFF and R2∗ among the three groups (P < 0.05). Bone density had a moderate inverse correlation with PDFF (r  = -0.659) but a positive association with R2∗ (r = 0.508, P < 0.001). Adjusted for age, years since menopause and body mass index, odds ratios (95% confidence interval) for osteopenia and osteoporosis per standard deviation higher marrow PDFF and R2∗ were 2.9 (1.4-5.8) and 0.4 (0.2-0.8), respectively. The areas under the curve were 0.821 for PDFF, 0.784 for R2∗, and 0.922 for both combined for the detection of osteoporosis (P < 0.05). Similar results were obtained in distinguishing osteopenia from healthy controls.

Conclusions: Simultaneous estimation of marrow R2∗ and PDFF improves the discrimination of osteopenia and osteoporosis in comparison with the PDFF or R2∗ alone.

Download full-text PDF

Source
http://dx.doi.org/10.1097/GME.0000000000001799DOI Listing

Publication Analysis

Top Keywords

pdff r2∗
16
osteopenia osteoporosis
12
proton density
8
density fat
8
fat fraction
8
postmenopausal women
8
fat analysis
8
analysis calculation
8
calculation technique
8
r2∗
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!