Deep learning techniques have been widely applied to hyperspectral image (HSI) classification and have achieved great success. However, the deep neural network model has a large parameter space and requires a large number of labeled data. Deep learning methods for HSI classification usually follow a patchwise learning framework. Recently, a fast patch-free global learning (FPGA) architecture was proposed for HSI classification according to global spatial context information. However, FPGA has difficulty in extracting the most discriminative features when the sample data are imbalanced. In this article, a spectral-spatial-dependent global learning (SSDGL) framework based on the global convolutional long short-term memory (GCL) and global joint attention mechanism (GJAM) is proposed for insufficient and imbalanced HSI classification. In SSDGL, the hierarchically balanced (H-B) sampling strategy and the weighted softmax loss are proposed to address the imbalanced sample problem. To effectively distinguish similar spectral characteristics of land cover types, the GCL module is introduced to extract the long short-term dependency of spectral features. To learn the most discriminative feature representations, the GJAM module is proposed to extract attention areas. The experimental results obtained with three public HSI datasets show that the SSDGL has powerful performance in insufficient and imbalanced sample problems and is superior to other state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2021.3070577DOI Listing

Publication Analysis

Top Keywords

hsi classification
16
global learning
12
insufficient imbalanced
12
spectral-spatial-dependent global
8
learning framework
8
hyperspectral image
8
deep learning
8
long short-term
8
imbalanced sample
8
learning
6

Similar Publications

Non-destructive prediction and pixel-level visualization of polysaccharide-based properties in ancient paper using SWNIR hyperspectral imaging and machine learning.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.

Ancient documents and artworks are invaluable cultural heritage artworks that require careful preservation. Traditional methods for assessing their physical and chemical properties-such as tearing index, tensile index, water absorption, and pH-are often destructive, risking irreversible damage. This study introduces a novel, non-destructive approach using Short-Wave Near-Infrared (SWNIR) hyperspectral imaging (HSI) combined with advanced machine learning models.

View Article and Find Full Text PDF

The efficacy and safety of drugs are closely related to the geographical origin and quality of the raw materials. This study focuses on using near-infrared hyperspectral imaging (NIR-HSI) combined with machine learning algorithms to construct content prediction models and origin identification models to predict the components and origin of Radix Paeoniae Rubra (RPR). These models are quick, non-destructive, and accurate for assessing both component content and origin.

View Article and Find Full Text PDF

Feature selection (FS) is a critical step in hyperspectral image (HSI) classification, essential for reducing data dimensionality while preserving classification accuracy. However, FS for HSIs remains an NP-hard challenge, as existing swarm intelligence and evolutionary algorithms (SIEAs) often suffer from limited exploration capabilities or susceptibility to local optima, particularly in high-dimensional scenarios. To address these challenges, we propose GWOGA, a novel hybrid algorithm that combines Grey Wolf Optimizer (GWO) and Genetic Algorithm (GA), aiming to achieve an effective balance between exploration and exploitation.

View Article and Find Full Text PDF

The approaches used to determine the medicinal properties of the plants are often destructive, labor-intensive, time-consuming, and expensive, making it impossible to analyze their quality analysis online. Performance of hyperspectral imaging (HSI) integrated with intelligent techniques to overcome these problems was investigated in this research. For this purpose, three classification methods-support vector machine, random forest (RF), and extreme gradient boosting-were studied for the classification of plants in three classes of medicinal, edible, and ornamental for the organs of leaf, stem, flower, and root.

View Article and Find Full Text PDF

Seafood quality preservation remains a critical focus in the food industry, particularly as the freeze-thaw process significantly impacts the freshness and safety of aquatic products. This study investigated quality changes in frozen mackerel subjected to two thawing methods, room temperature (RT) and running water (WT), and assessed the potential of hyperspectral imaging (HSI) for classifying these methods. After thawing, mackerel samples were stored at 5 °C for 21 days, with physicochemical, textural, and spectroscopic analyses tracking quality changes and supporting the development of a spectroscopic classification model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!