Induced water hyacinth with purple roots (PRWH) exerts a significant inhibitory effect on the growth of blue-green algae. Interestingly, its chemical constituents differ from those of wild-type water hyacinth and have not yet been reported. This study aimed to explore the chemical constituents of PRWH and its bioactive components serving as allelopathic agents against blue-green algae. Phytochemical investigation of the bioactive ethyl acetate fraction of a crude methanol extract from PRWH led to the isolation of 56 compounds, including 11 new phenylphenalene derivatives. The structures of these compounds were elucidated by comprehensive analyses through NMR, HRMS, and X-ray techniques. Bioactivity evaluation against indicated that compounds , , , , , , and potently inhibited blue-green algae growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jnatprod.1c00075 | DOI Listing |
Sci Rep
January 2025
College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.
View Article and Find Full Text PDFACS Omega
December 2024
East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, China.
Micro-polluted surface waters (MPSWs) draw increased concern for environmental protection. However, traditional treatment methods such as activated sludge, ozone activated carbon, and membrane filtration suffer from high cost and susceptibility to secondary pollution and are rarely used to address MPSWs. Herein, a new stepped combined constructed wetland planted with without additional inputs was developed.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum.
View Article and Find Full Text PDFSci Total Environ
January 2025
Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa.
This study investigated the microbial diversity inhabiting the roots (rhizosphere) of macrophytes thriving along the Blesbokspruit wetland, South Africa's least conserved Ramsar site. The wetland suffers from decades of pollution from mining wastewater, agriculture, and sewage. The current study focused on three macrophytes: Phragmites australis (common reed), Typha capensis (bulrush), and Eichhornia crassipes (water hyacinth).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Pharmacognosy Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
Contamination of water by heavy toxic metal ions such as (e.g., Cr, Mn, Ni, Cu, Zn, As Pb, Cd, and Ag) can lead to serious environmental and human health problems because of their acute and chronic toxicity to the biological system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!