Sonodynamic therapy (SDT), wherein sonosensitizers irradiated with ultrasound (US) produce cytotoxic reactive oxygen species (ROS), has garnered great attention as a promising alternative to photodynamic therapy owing to the significantly increased depth of tissue penetration. The development of nanocarriers that can selectively deposit sonosensitizers into tumor tissues without systemic toxicity is crucial to facilitate the translation of SDT to clinical use. In this study, exosomes, a class of naturally occurring nanoparticles, were utilized as nanocarriers for safe and cancer-targeted delivery of a sonosensitizer, indocyanine green (ICG). The exosomes were surface-engineered with an active cancer-targeting ligand, folic acid (FA), to increase the cancer specificity of the ICG-loaded exosomes (ExoICG). The FA-conjugated, ICG-loaded exosomes (FA-ExoICG) greatly improved aqueous stability and cellular uptake of ICG, resulting in significantly increased ROS generation in breast cancer cells. As a result, the FA-ExoICG demonstrated greater sonotoxicity against cancer cells than ExoICG and free ICG. The study revealed that compared to ExoICG, more FA-ExoICG accumulated in tumors, and their pharmacokinetic properties were superior. Notably, tumor growth in mice was significantly suppressed, without systemic toxicity, by a single intravenous injection of the FA-ExoICG and subsequent US irradiation. Therefore, this study demonstrated that active cancer-targeted FA-ExoICG could serve as effective nanosonosensitizers for safe and targeted cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c22883DOI Listing

Publication Analysis

Top Keywords

safe targeted
8
systemic toxicity
8
icg-loaded exosomes
8
cancer cells
8
cancer
5
fa-exoicg
5
targeted sonodynamic
4
sonodynamic cancer
4
cancer therapy
4
therapy biocompatible
4

Similar Publications

Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action.

View Article and Find Full Text PDF

Multi-epitope vaccines: a promising strategy against viral diseases in swine.

Front Cell Infect Microbiol

December 2024

School of Basic Medical Sciences, Binzhou Medical University, Yantai, China.

Viral infections in swine, such as African swine fever (ASF), porcine reproductive and respiratory syndrome (PRRS), and foot-and-mouth disease (FMD), have a significant impact on the swine industry. Despite the significant progress in the recent efforts to develop effective vaccines against viral diseases in swine, the search for new protective vaccination strategy remains a challenge. The antigenic epitope, acting as a fundamental unit, can initiate either a cellular or humoral immune response.

View Article and Find Full Text PDF

Background And Aim: Post-hepatectomy liver failure (PHLF) after major hepatopancreatoduodenectomy (HPD) is a challenge to overcome. However, the appropriate target proportion of the future liver remnant (pFLR) to prevent severe PHLF in major HPD remains uncertain. This study aimed to determine the minimum pFLR required for safe major HPD.

View Article and Find Full Text PDF

Discovery and characterization of stereodefined PMO-gapmers targeting tau.

Mol Ther Nucleic Acids

March 2025

Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA.

Antisense oligonucleotides (ASOs) are an important class of therapeutics to treat genetic diseases, and expansion of this modality to neurodegenerative disorders has been an active area of research. To realize chronic administration of ASO therapeutics to treat neurodegenerative diseases, new chemical modifications that improve activity and safety profiles are still needed. Furthermore, it is highly desirable to develop a single stereopure ASO with a defined activity and safety profile to avoid any efficacy and safety concerns due to the batch-to-batch variation in the composition of diastereomers.

View Article and Find Full Text PDF

This article comprehensively reviews the working, efficacy, and safety profile of zolbetuximab. Zolbetuximab is a pioneering chimeric monoclonal antibody designed to target Claudin 18.2 (CLDN18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!