Alveolar enlargement is a pathological feature of emphysema. Long-term exposure to cigarette smoke (CS) is a high-risk factor for the development of emphysema. Abnormal protein ubiquitination has been implicated to regulate the development of human disorders, however, the role of protein ubiquitination in emphysema has not been well-studied. In this study, we attempted to investigate if a deubiquitinase, USP13, regulates the development of emphysema. Under a mild CS exposure condition, USP13-deficient mice show significant increases in alveolar chord length, indicating that USP13-deficient mice are susceptible to CS-induced alveolar enlargement. It has been shown that USP13 knockout reduced fibronectin expression in lungs. Here, we found that collagen levels were reduced in USP13 siRNA-transfected lung fibroblast cells. This suggests that a loss of extracellular matrix in connective tissues contributes to alveolar enlargement in USP13-deficient mice in response to CS exposure. Further, we investigated the role of USP13 in the expression of oxidative stress markers TXNIP and HMOX1. An increase in HMOX1 abundance was observed in USP13 knockdown lung fibroblast and epithelial cells. Overexpression of USP13 reduced HMOX1 protein levels in lung fibroblast cells, suggesting that modulation of USP13 levels may affect oxidative stress. Knockdown of USP13 significantly reduced TXNIP levels in lungs or lung fibroblast cells. A protein stability pulse-chase assay showed that TXNIP is instable within USP13 knockdown lung fibroblast cells. Further, the reduction of TXNIP was observed in USP13 inhibitor-treated lung epithelial cells. USP13-deficient mice also show higher levels of IgG in bronchoalveolar lavage fluid. This study provides evidence showing that USP13 deficiency plays a role in alveolar space enlargement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887808 | PMC |
http://dx.doi.org/10.1007/s12013-021-01000-0 | DOI Listing |
Cancers (Basel)
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
Background: Almonertinib is the initial third-generation EGFR-TKI in China, but its resistance mechanism is unknown. Cancer-associated fibroblasts (CAFs) are essential matrix components in the tumor microenvironment, but their impact on almonertinib resistance is unknown. This study aimed to explore the correlation between CAFs and almonertinib resistance in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA. Electronic address:
Extracellular matrix stiffness is one of the multiple mechanical signals that alters cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the GEF, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!