Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The morphology and proliferation of eukaryotic cells depend on their microenvironment. When electrospun mats are used as tissue engineering scaffolds, the local alignment of the fibers has a pronounced influence on cells. Here we analyzed the morphology of the patterned mats produced by electrospinning of PLA-gelatin blend onto a conductive grid. We investigated the cellular morphology and proliferation of two cell lines (keratinocytes HaCaT and fibroblasts NIH 3T3) on the patterned mats. The non-patterned mats of the same chemical composition were used as control ones. The HaCaT cells predominantly grew on convex areas of the patterned mats along with increasing their nucleus area and decreasing cell area. The 3T3 cells had a lower proliferative rate when grown on the patterned mats. The results can be valuable for further development of the procedures, which allow the patterned electrospun mats development as well as for the investigation of cell-substrate interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185091 | PMC |
http://dx.doi.org/10.1007/s10867-021-09574-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!