Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glaucoma is a leading cause of blindness worldwide whose detection is based on multiple factors, including measuring the cup to disc ratio, retinal nerve fiber layer and visual field defects. Advances in image processing and machine learning have allowed the development of automated approached for segmenting objects from fundus images. However, to build a robust system, a reliable ground truth dataset is required for proper training and validation of the model. In this study, we investigate the level of agreement in properly detecting the retinal disc in fundus images using an online portal built for such purposes. Two Doctors of Optometry independently traced the discs for 159 fundus images obtained from publicly available datasets using a purpose-built online portal. Additionally, we studied the effectiveness of ellipse fitting in handling misalignments in tracing. We measured tracing precision, interobserver variability, and average boundary distance between the results provided by ophthalmologists, and optometrist tracing. We also studied whether ellipse fitting has a positive or negative impact on properly detecting disc boundaries. The overall agreement between the optometrists in terms of locating the disc region in these images was 0.87. However, we found that there was a fair agreement on the disc border with kappa = 0.21. Disagreements were mainly in fundus images obtained from glaucomatous patients. The resulting dataset was deemed to be an acceptable ground truth dataset for training a validation of models for automatic detection of objects in fundus images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148353 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251703 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!