Cassava (Manihot esculenta Crantz) presents significant economic importance in Brazil and other developing countries due to its use in human and animal feeding. In 2019, cassava plants sampled in Pará state (Brazil) presented necrotic and irregular leaf spots, characteristic symptoms of cassava anthracnose. About 90% of the plants were symptomatic, and disease severity was higher during months with high temperature and humidity. Fragments of symptomatic tissues were removed from the lesion transition area, surface disinfested (45 s in 70% ethanol, 1 min in 1% NaOCl, and rinsed twice in sterile water), and plated on potato dextrose agar. Cultures were incubated at 25 °C under continuous light for 7 days. Among the obtained isolates, seven presented grey felt-like mycelium with white sectors, reverse greyish, and hyaline, aseptate, smooth-walled, falcate conidia with average size 20.7-30.7 (26.1 ± 2.1) × 2.4-4.8 (3.5 ± 0.5) μm. Phenotypical features were similar to C. truncatum (Damm et al. 2019). The representative isolate UFT/Coll87 was chosen for further assays. The identity of the isolate was determined by maximum likelihood analysis using sequences of actin (ACT, GenBank accession number MT321653), β-tubulin (TUB2, MT856673) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, MT800857) partial regions. Colletotrichum isolate from cassava nested with C. truncatum isolates in a clade with 100% support, being confidently assigned to this species. Koch's postulates were fulfilled to confirm the pathogenicity of UFT/Coll87. Inoculation was carried out in three cassava plants by spraying a conidial suspension (106 conida mL-1) on unwounded leaves (three leaves per plant). Plants sprayed with sterile water represented negative control. Inoculated plants were kept in a humid chamber for 48 h, 25 °C, and a 12-h photoperiod. The experiment was repeated 2 times. Typical cassava anthracnose symptoms were observed 10 days after inoculation. No symptoms were observed in negative control. The pathogen was reisolated from symptomatic leaves and was phenotypically identical to the original isolate UFT/Coll87, fulfilling Koch's postulates. Colletotrichum fructicola, C. karstii, C. plurivorum, and C. siamense were reported causing cassava anthracnose in China (Liu et al. 2019). In Brazil, C. chrysophilum, C. fructicola, C. siamense and C. theobromicola were reported in association with cassava (Bragança et al. 2016; Oliveira et al. 2018; Machado et al. 2020). To our knowledge, this is the first report of C. truncatum causing cassava anthracnose worldwide. Our finding is important for disease management due to the high host range of C. truncatum. The pathogen can reduce the cassava yield, and the crop may serve as a potential inoculum source since it is commonly cultivated near to other crops that are also infected by C. truncatum.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-03-21-0571-PDNDOI Listing

Publication Analysis

Top Keywords

cassava anthracnose
16
cassava
11
cassava plants
8
sterile water
8
isolate uft/coll87
8
koch's postulates
8
negative control
8
symptoms observed
8
causing cassava
8
anthracnose
5

Similar Publications

Despite being identified in previous articles, the pathogenesis-related 10 (PR-10) protein remains relatively overlooked and has yet to be fully characterized in numerous plant species. This research employs a comprehensive data mining approach to in silico characterize PR-10 proteins in cassava, a vital crop plant globally. In this study, the focus was on in silico identified 53 cassava PR-10 proteins, which can be categorized into two main subgroups: 34 major latex proteins (MLPs) and 13 major allergen proteins, Pru ar 1, based on their phylogenetic relationship.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of applying oxidized cassava starch-based edible coatings with addition of lemongrass essential oil emulsion on 'Palmer' mangoes stored under refrigeration. A completely randomized design was used, arranged in a 5 × 3 factorial scheme, with five types of coatings and three evaluation times. The evaluated postharvest quality parameters consisted of weight loss, pulp and peel firmness, biochemical transformations related to pigments, and pulp and peel coloration of mango.

View Article and Find Full Text PDF

Causing Anthracnose in in Guangxi, China.

Plant Dis

July 2024

Guangxi Academy of Agricultural Sciences, Institute of Plant Protection, 174 daxue road, Nanning, Guangxi Province, Nanning, Guangxi, China, 530007;

(L.)Jongkind, distributed in Southeast Asia, is widely planted in southern China for its ornamental and medicinal value. In February 2023, anthracnose symptoms were observed on leaves in Nanning Garden Expo (N22°43', E108°28'), Guangxi, China, causing severe defoliation of infected plants with a foliar disease incidence ranging from 40 to 60% (n = 100) in a 2 ha field.

View Article and Find Full Text PDF

Diversity, Prevalence and Virulence of Species Causing Anthracnose on Cassava Leaves in the Northern Region of Brazil.

J Fungi (Basel)

May 2024

Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil.

Cassava ( Crantz) is a staple crop widely cultivated by small farmers in tropical countries. However, despite the low level of technology required for its management, it can be affected by several diseases, with anthracnose as the main threat. There is little information about the main species of that infect cassava in Brazil.

View Article and Find Full Text PDF

Despite fungal diseases affecting the aerial parts of cassava ( Crantz) and causing significant yield losses, there is a lack of comprehensive studies assessing resistance in the species' germplasm. This study aimed to evaluate the phenotypic diversity for resistance to anthracnose disease (CAD), blight leaf spot (BliLS), brown leaf spot (BLS), and white leaf spot (WLS) in cassava germplasm and to identify genotypes suitable for breeding purposes. A total of 837 genotypes were evaluated under field conditions across two production cycles (2021 and 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!