Lithium-sulfur (Li-S) batteries, as part of the post-lithium-ion batteries (post-LIBs), are expected to deliver significantly higher energy densities. Their power densities, however, are today considerably worse than that of the LIBs, limiting the Li-S batteries to very few specific applications that need low power and long working time. With the rapid development of single cell components (cathode, anode, or electrolyte) in the last few years, it is expected that an integrated approach can maximize the power density without compromising the energy density in a Li-S full cell. Here, this goal is achieved by using a novel biomass porous carbon matrix (PCM) in the anode, as well as N-Co S nanoparticles and carbon nanotubes (CNTs) in the cathode. The authors' approach unlocks the potential of the electrodes and enables the Li-S full pouch cells with unprecedented power densities and energy densities (325 Wh kg and 1412 W kg , respectively). This work addresses the problem of low power densities in the current Li-S technology, thus making the Li-S batteries a strong candidate in more application scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292852 | PMC |
http://dx.doi.org/10.1002/advs.202101182 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Harbin Institute of Technology, School of Chemistry and Chemical Engineering, No. 92, West Dazhi Street, 150001, Harbin, CHINA.
Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.
Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.
View Article and Find Full Text PDFSpectral analysis is a widely used method for monitoring photosynthetic capacity. However, vegetation indices-based linear regression exhibits insufficient utilization of spectral information, while full spectra-based traditional machine learning has limited representational capacity (partial least squares regression) or uninterpretable (convolution). In this study, we proposed a deep learning model with enhanced interpretability based on attention and vegetation indices calculation for global spectral feature mining to accurately estimate photosynthetic capacity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
Lithium-sulfur (Li-S) batteries face significant challenges, such as polysulfide dissolution, sluggish reaction kinetics, and lithium anode corrosion, hindering their practical application. Herein, we report a highly effective approach using a zinc phosphide (ZnP) bifunctional catalyst to address these issues. The ZnP catalyst effectively anchors lithium polysulfides (LiPSs), catalytically reactivates them, and enhances lithium-ion diffusion.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!