Although astragaloside IV protects from acute myocardial infarction (AMI)-induced chronic heart failure (CHF), the underlying mechanism of action is unclear. We determined the potential therapeutic effect of astragaloside IV using molecular docking approaches and validated the findings by the ligation of the left anterior descending (LAD) coronary artery-induced AMI rat model. The interaction between astragaloside IV and myeloid differentiation factor 88 (MyD88) was evaluated by SwissDock. To explore the mechanisms underlying the beneficial effects of astragaloside IV in the LAD coronary artery ligation-induced AMI model, we administered the rats with astragaloside IV for 4 weeks. Hemodynamic indexes were used to evaluate the degree of myocardial injury in model rats. The histopathological changes in myocardium were detected by hematoxylin & eosin (H&E) staining and Masson's staining. Myocardium homogenate contents of collagen I and collagen III were evaluated by ELISA. The level of myocardial hydroxyproline (HYP) was determined by alkaline hydrolysis. Immunohistochemistry was used to examine collagen I. Western blotting was used to examine relevant proteins. As per the molecular docking study results, astragaloside IV may act on MyD88. Furthermore, astragaloside IV improved hemodynamic disorders, alleviated pathological changes, and reduced abnormal collagen deposition and myocardial HYP in vivo. Astragaloside IV significantly reduced the overexpression of TLR4, MyD88, NF-Κb, and TGF-β, which further validated the molecular docking findings. Hence, astragaloside IV ameliorates AMI by reducing inflammation and blocking TLR4/MyD88/NF-κB signaling. These results indicate that astragaloside IV may alleviate AMI. PRACTICAL APPLICATIONS: Astragaloside IV, a small active substance extracted from Astragalus membranaceus, has demonstrated potent protective effects against cardiovascular ischemia/reperfusion, diabetic nephropathy, and other diseases. Molecular docking experiments showed that astragaloside IV might act on the myeloid differentiation factor 88 (MyD88). Astragaloside IV can effectively reduce the overexpression of TLR4, MyD88, and NF-κB p65, indicating that astragaloside IV inhibits inflammation via TLR4/MyD88/NF-κB signaling pathway. These results indicate that astragaloside IV may alleviate acute myocardial infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13757DOI Listing

Publication Analysis

Top Keywords

astragaloside
16
molecular docking
16
acute myocardial
12
myocardial infarction
12
tlr4/myd88/nf-κb signaling
12
signaling pathway
8
lad coronary
8
astragaloside myeloid
8
myeloid differentiation
8
differentiation factor
8

Similar Publications

Background: Bunge [Fabaceae; ] (AM), a traditional Chinese medicinal (TCM) botanical drug, has been used for centuries and is gaining growing recognition in medical research for its therapeutic potential. The currently accepted scientific name is Astragalus mongholicus Bunge, with Astragalus membranaceus Fisch. ex Bunge recognized as a taxonomic synonym.

View Article and Find Full Text PDF

Aim: This research aimed to probe the effects of fecal microbiota and on the metabolism of Radix Astragali (RA) and solid fermenting Radix Astragali (FRA). It further explores pharmacological effects of RA, , and FRA on HUA mouse model and the mechanisms in HUA treatment.

Methods: Fecal microbiota and were used to ferment FRA and RA in vitro to probe the impacts of microbiota on the metabolism of active compound.

View Article and Find Full Text PDF

Protective effect of Astragaloside II against lung injury in COPD based on mTORC1/GSK-3β signaling pathway.

Eur J Pharmacol

December 2024

Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China. Electronic address:

Background: Astragaloside II (AST II) is one of the principal bioactive components of Astragalus mongholicus Bunge, exhibiting multiple pharmacological properties. However, the therapeutic efficacy of AST II in Chronic Obstructive Pulmonary Disease (COPD) remains to be fully elucidated. The study explored the effects and mechanisms of AST II in a COPD model induced by exposure to cigarette smoke (CS) and lipopolysaccharide (LPS) in mice.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease mainly characterized by the activation of endothelial cells and recruitment of macrophages, leading to plaque formation. Astragaloside IV (AS-IV), a natural saponin derived from Astragalus mongholicus Bunge, has been shown to confer protective effects against cardiovascular diseases.

Purpose: The purpose of this study is to explore the role of AS-IV on atherosclerosis and the underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!